Page 1016 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 1016

1000                 j. M. Newcomb, T. R. Varick, C. Ha, B. Manek, and X. Yue, J. Am. Chem. Soc., 114, 8158 (1992).
                         k. C. E. Brown, A. G. Neville, D. M. Raynner, K. U. Ingold, and J. Lusztyk, Aust. J. Chem., 48, 363 (1995).
                          l. C. Chatgilialoglu and M. Lucarini, Tetrahedron Lett., 36, 1299 (1995).
     CHAPTER 11
                         m. B. Branchi, C. Galli, and P. Gentili, Eur. J. Org. Chem., 2844 (2002).
     Free Radical Reactions  n. C. Chatgilialoglu, J. Dickhaut, and B. Giese, J. Org. Chem., 56, 6399 (1991).
                         o. T. Zytowski and H. Fischer, J. Am. Chem. Soc., 118, 437 (1996).
                         p. D. V. Avila, K. U. Ingold, J. Lusztyk, W. R. Dolbier, Jr., and H.-Q. Pan, Tetrahedron, 52, 12351 (1996).
                         q. D. Weldon, S. Holland, and J. C. Scaiano, J. Org. Chem., 61, 8544 (1996).
                          r. K. Heberger, M. Walbiner, and H. Fischer, Angew. Chem. Int. Ed. Engl. 31, 635 (1992).
                          s. K. Heberger and H. Fischer, Int. J. Chem. Kinet., 25, 249 (1993).
                          t. T. Zytkowski and H. Fischer, J. Am. Chem. Soc., 119, 12869 (1997).
                         u. O. Ito, S. Tamura, K. Murakami, and M. Matsuda, J. Org. Chem., 53, 4758 (1988).
                         v. M. Mewcomb and A. G. Glenn, J. Am. Chem. Soc., 111, 275 (1989); A. L. J. Beckwith and V.W. Bowry, J. Org.
                           Chem., 54, 2681 (1989); V. W. Bowry, J. Lusztyk, and K. U. Ingold, J. Am. Chem. Soc., 113, 5687 (1991).
                         w. P. S. Engel, S.-L. He, J. T. Banks, K. U. Ingold, and J. Lusztyk, J. Org. Chem.,62, 1210 (1997).
                         x. T. A. Halgren, J. D. Roberts, J. H. Horner, F. N. Martinez, C. Tronche, and M. Newcomb, J. Am. Chem. Soc., 122,
                           2988 (2000).
                         y. A. L. J. Beckwith, C. J. Easton, T. Lawrence, and A. K. Serelis, Aust. J. Chem. 36, 545 (1983).
                         z. C. Ha, J. H. Horner, M. Newcomb, T. R. Varick, B. R. Arnold, and J. Lusztyk, J. Org. Chem., 58, 1194 (1993);
                           M. Newcomb, J. H. Horner, M. A. Filipowski, C. Ha, and S.-U. Park, J. Am. Chem. Soc., 117, 3674 (1995).
                         aa. L. J. Johnson, J. Lusztyk, D. D. M. Wayner, A. N. Abeywickreyma, A. L. J. Beckwith, J. C. Scaiano, and K. U. Ingold,
                           J. Am. Chem. Soc., 107, 4594 (1985).
                         bb. J. A. Franz, R. D. Barrows, and D. M. Camaioni, J. Am. Chem. Soc., 106, 3964 (1984).
                         cc. J. A. Franz, M. S. Alnajjar, R. D. Barrows, D. L. Kaisaki, D. M. Camaioni, and N. K. Suleman, J. Org. Chem., 51,
                           1446 (1986).
                         dd. A. L. J. Beckwith and C. H. Schiesser, Tetrahedron Lett., 26, 373 (1985).
                         ee. A. Annunziata, C. Galli, M. Marinelli, and T. Pau, Eur. J. Org. Chem. 1323 (2001).
                         ff. A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 111, 230 (1989).
                         gg. A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 111, 2674 (1989).
                         hh. H. Misawa, K. Sawabe, S. Takahara, H. Sakuragi, and K. Tokumaru, Chem. Lett., 357 (1988).
                         ii. B. Maillard, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc., 105, 5095 (1983).
                         jj. C. Chatgilialoglu, C. Ferreri, M. Lucarini, P. Pedrielli, and G. Pedulli, Organometallics, 14, 2672 (1995);
                           O. A. Kurnysheva, N. P. Gritsan, and Y. P. Tsentalovich, Phys. Chem. Chem. Phys., 3, 3677 (2001).
                         kk. R. Han and H. Fischer, Chem. Phys., 172, 131 (1993).
                         ll. E. Baciocchi, M. Bietti, M. Salamone, and S. Steenken, J. Org. Chem., 67, 2266 (2002).
                        mm. L. Mathew and J. Warkentin Can. J. Chem., 66, 11 (1988).
                         nn. J. M. Tanko and J. F. Blackert, J. Chem. Soc., Perkin Trans. 2, 1175 (1996).
                         oo. D. P. Curran, A. A. Martin-Esker, S.-B, Ko, and M. Newcomb, J. Org. Chem., 58, 4691 (1993).

                       11.2.3. Structure-Reactivity Relationships

                       11.2.3.1. Hydrogen Abstraction Reactions In hydrogen atom abstraction reactions,
                       the strength of the bond to the reacting hydrogen is a major determinant of the rate at
                       which reaction occurs. Table 11.4 gives some bond dissociation energies (BDE) that
                       are particularly relevant to free radical reactions.
                           Generally, the ease of hydrogen atom abstraction parallels the BDE. Several
                       of the trends, such as those for hydrocarbons and alkyl halides were discussed in
                       Sections 3.1.2 and 3.4.3. The general tendency for functional groups to weaken  -CH
                       bond is illustrated by the values for methanol, diethyl ether, acetone, and acetoni-
                       trile. The bond order relationship Si−H > Ge−H > Sn−H is particularly important
                       in free radical chemistry. Entries 16 and 18 in Table 11.3 provide abstraction rates
                       for silanes. The comparison between Entries 6 and 16 and 14 and 18 shows that
                       silanes are somewhat less reactive than stannanes. Trisubstituted stannanes are among
                       the most reactive hydrogen atom donors. As indicated by Entries 6 to 8, hydrogen
                                                                         7
                                                                            −1 −1
                       abstractions from stannanes proceed with rates higher than 10 M s  and have very
                       low activation energies. This high reactivity correlates with the low bond strength of
                       the Sn−H bond (78 kcal) For comparison, Entries 1 to 3 give the rates of hydrogen
                       abstraction from two of the more reactive C−H hydrogen atom donors, tetrahydrofuran
                       and isopropylbenzene. For the directly comparable reaction with the phenyl radical
   1011   1012   1013   1014   1015   1016   1017   1018   1019   1020   1021