Page 1019 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 1019

applicable to polycyclic hydrocarbons such as cubane, which do not react cleanly by  1003
          direct halogenation. The reactions are carried out under phase transfer conditions using
          CBr or CCl as the halogen source and the CBr · and CCl · as the chain carriers. The  SECTION 11.2
                     4
              4
                                                          3
                                                 3
          reactions are initiated by electron transfer from hydroxide ion.              Characteristics of
                                                                                       Reactions Involving
                     Initiation                                                      Radical Intermediates
                                            –.
                       CX 4 +  – OH     [CX4 ]      CX 3 .  +  X –
                     Propagation
                          .                               .
                       CX 3  +   HR           CX H   +  R
                                                3
                       R .  +    CX 4           R X    +   CX 3 .
                                           CBr
                       (CH ) CHCH CH 3        4      (CH ) CCH CH 3
                                                             2
                                                        3 2
                                 2
                          3 2
                                            –
                                          +
                                       R N Br , NaOH
                                        4
                                                          Br      37%
                                                                          Ref. 86
                                                      Cl
                                        CCl 4
                                         –
                                     R NBr , NaOH       81%
                                      4
                                                                           Ref. 87
              Many free radical reactions respond to introduction of polar substituents, just as
          do heterolytic processes that involve polar or ionic intermediates. The case of toluene
          bromination can be used to illustrate this point.
                                         .
                 .                                                 .
               Br  +  H  CH Ph        Br  H  CH Ph        H  Br  +  CH Ph
                                               2
                                                                      2
                           2
                                              .
                    .                                                     .
               PhCH 2  +  Br  Br       PhCH 2  Br  Br        PhCH Br  +  Br
                                                                 2
          The substituent effects on toluene bromination are correlated by the Hammett equation,
          which gives a   value of −1 4, indicating that the benzene ring acts as an electron
          donor in the TS. 88  Other radicals, for example, the t-butyl radical, show a positive
          for hydrogen abstraction reactions involving toluene, 89  which indicates that radicals
          can exhibit either electrophilic or nucleophilic character. Why do free radical reactions
          involving neutral reactants and intermediates respond to substituent changes that
          modify electron distribution? One explanation is based on the idea that there is some
          polar character in the TS because of the electronegativity differences of the reacting
          atoms. 90
                                                      .
                                                   δ–   δ+
                     Br  H CH 2       X           Br   H CH 2       X
           86
             P. R. Schreiner, O. Lauenstein, I. V. Kolomitsyn, S. Nadi, and A. A. Fokin, Angew. Chem. Int. Ed.
             Engl., 37, 1895 (1998).
           87   A. A. Fokin, O. Lauenstein, P. A. Gunchenko, and P. R. Schreiner, J. Am. Chem. Soc., 123, 1842
             (2001).
           88
             J. Hradil and V. Chvalovsky, Collect. Czech. Chem. Commun., 33, 2029 (1968); S. S. Kim, S. Y. Choi,
             and C. H. Kong, J. Am. Chem. Soc., 107, 4234 (1984); G. A. Russell, C. DeBoer, and K. M. Desmond,
             J. Am. Chem. Soc., 85, 365 (1963); C. Walling, A. L. Rieger, and D. D. Tanner, J. Am. Chem. Soc., 85,
             3129 (1963).
           89   W. A. Pryor, F. Y. Tang, R. H. Tang, and D. F. Church, J. Am. Chem. Soc., 104, 2885 (1982);
             R. W. Henderson and R. O. Ward, Jr., J. Am. Chem. Soc., 96, 7556 (1974); W. A. Pryor, D. F. Church,
             F. Y. Tang, and R. H. Tang, Frontiers of Free Radical Chemistry, W. A. Pryor, ed., Academic Press,
             New York, 1980, pp. 355–380.
           90
             E. S. Huyser, Free Radical Chain Reactions, Wiley-Interscience, New York, 1970, Chap. 4;
             G. A. Russell, in Free Radicals, Vol. 1, J. Kochi, ed., Wiley, New York, 1973, Chap. 7.
   1014   1015   1016   1017   1018   1019   1020   1021   1022   1023   1024