Page 866 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 866

850                   Lewis acid catalysis can also be applied to inverse electron demand D-A reactions,
                       but with the proviso that the strongest interaction must be with the diene in this case.
     CHAPTER 10
     Concerted Pericyclic           O                                    O
     Reactions                                                                 CH 3
                                                                     CH 3
                                              CH 3
                                CH 3                                         H
                                            +          45 mol% AlBr 3
                                                      5 mol%  (CH ) Al
                                                               3 3
                                            TBSO                               OTBS
                                                                     70% (exo) adduct;
                                                                     also 7% endo adduct
                                                                                        Ref. 31
                           Metal cations can catalyze reactions of certain dienophiles. For example, Cu  2+
                       strongly catalyzes addition reactions of 2-pyridyl styryl ketones, presumably through
                       a chelate. 32  DFT (B3LYP/6-31G*) computations indicate that this reaction shifts to a
                       stepwise ionic mechanism in the presence of the Lewis acid. 33

                                                                                  NO 2
                                               O
                                 N
                               O 2              N    +

                                                                          O
                                                                               N
                                        Solvent        Rate (M  –1s  – 1 )  Relative Rate
                                 Acetonitrile           1.3 x 10  –5          1
                                 Ethanol                3.8 x 10  –5         2.9
                                 Water                        –5             310
                                                        4.0 x 10
                                 Water + 0.01 M Cu(NO )  3.25             250,000
                                                 3 2
                           The solvent also has an important effect on the rate of D-A reactions. The
                       traditional solvents were nonpolar organic solvents such as aromatic hydrocarbons.
                       However, water and other highly polar solvents, such as ethylene glycol and
                       formamide, accelerate a number of D-A reactions. 34  The accelerating effect of water
                       is attributed to “enforced hydrophobic interactions.” 35  That is, the strong hydrogen-
                       bonding network in water tends to exclude nonpolar solutes and forces them together,
                       resulting in higher effective concentrations. There may also be specific stabilization
                                         36
                       of the developing TS. For example, hydrogen bonding with the TS can contribute to
                       the rate acceleration. 37

                        31   M. E. Jung and P. Davidov, Angew. Chem. Int. Ed. Engl., 41, 4125 (2002).
                        32
                          S. Otto and J. B. F. N. Engberts, Tetrahedron Lett., 36, 2645 (1995).
                        33   L. R. Domingo, J. Andres, and C. N. Alves, Eur. J. Org. Chem., 2557 (2002).
                        34
                          D. Rideout and R. Breslow, J. Am. Chem. Soc., 102, 7816 (1980); R. Breslow and T. Guo, J. Am. Chem.
                          Soc., 110, 5613 (1988); T. Dunams, W. Hoekstra, M. Pentaleri, and D. Liotta, Tetrahedron Lett., 29,
                          3745 (1988).
                        35
                          S. Otto and J. B. F. N. Engberts, Pure Appl. Chem., 72, 1365 (2000).
                        36   R. Breslow and C. J. Rizzo, J. Am. Chem. Soc., 113, 4340 (1991).
                        37
                          W. Blokzijl, M. J. Blandamer, and J. B. F. N. Engberts, J. Am. Chem. Soc., 113, 4241 (1991);
                          W. Blokzijl and J. B. F. N. Engberts, J. Am. Chem. Soc., 114, 5440 (1992); S. Otto, W. Blokzijl, and
                          J. B. F. N. Engberts, J. Org. Chem., 59, 5372 (1994); A. Meijer, S. Otto, and J. B. F. N. Engberts,
                          J. Org. Chem., 65, 8989 (1998); S. Kong and J. D. Evanseck, J. Am. Chem. Soc., 122, 10418 (2000).
   861   862   863   864   865   866   867   868   869   870   871