Page 959 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 959

for synthetic purposes is the Wittig rearrangement, in which a strong base converts  943
          allylic ethers to 	-allyl alkoxides. 329
                                                                                         SECTION 10.6
                                                         –                                 Sigmatropic
                                                         O  CHZ         HO   CHZ
                           base                                   H +                    Rearrangements
                                  –
          ZCH OCH CH   CHR      ZC HOCH CH   CHR     CH 2  CHCHR     CH 2  CHCHR
              2
                  2
                                        2
          As the deprotonation at the 	’-carbon must compete with deprotonation of the 	-
          carbon in the allyl group, most examples involve a conjugated or electron-withdrawing
          substituent Z that can facilitate deprotonation. 330  In addition to direct deprotonation,
          there are other means of generating the anions of allyl ethers. 331 332
              The stereochemistry of the Wittig rearrangement can be predicted in terms of a
                                          2
          cyclic TS in which the 	-substituent R prefers an equatorial orientation. 333
                            H                H              H
                                R 2             R 2            R 2
                           :                                     –
                                                               O
                               O                O
                           Z               Z               Z
                                       transition structure
          A consistent feature of the stereochemistry is a preference for E-stereochemistry at
          the newly formed double bond, but the reaction can also show stereoselectivity at the
          newly formed single bond. This stereoselectivity has been carefully studied for the
          case where the substituent Z is an acetylenic group.
                      H                    H                     OH
                          R 2                  R 2
                                    CH                                    2
               CH 3                   3                                  R
                      –
                          O                    OH           R
                                                                   CH 3
                  R                    R
                     E-isomer                                 anti- isomer
                        H                   H                     OH
                            R 2                 R 2
                                                                          R 2
                       -
                           O                    OH           R
                  CH 3                 CH 3
                                                                    CH 3
                    R  Z-isomer         R                      syn-isomer
          The preferred stereochemistry arises from the TS that minimizes interaction between
                         2
          the alkynyl and R substituents. This stereoselectivity is exhibited in the rearrangement
          of 37 to 38.
          329
             J. Kallmarten, in Stereoselective Synthesis, Houben Weyl Methods in Organic Chemistry,
             R. W. Hoffmann, J. Mulzer, and E. Schaumann, eds., G. Thieme Verlag, Stuttgart, 1996, pp. 3810;
             T. Nakai and K. Mikami, Org. Reactions, 46, 105 (1994).
          330   For reviews of [2,3]-sigmatropic rearrangement of allyl ethers, see T. Nakai and K. Mikami, Chem.
             Rev., 86, 885 (1986).
          331
             W. C. Still and A. Mitra, J. Am. Chem. Soc., 100, 1927 (1978).
          332   K. Hioki, K. Kono, S. Tani, and M. Kunishima, Tetrahedron Lett., 39, 5229 (1998).
          333
             R. W. Hoffmann, Angew. Chem. Int. Ed. Engl., 18, 563 (1979); K. Mikami, Y. Kimura, N. Kishi, and
             T. Nakai, J. Org. Chem., 48, 279 (1983); K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, 40, 2303
             (1984); Y.-D. Wu, K. N. Houk, and J. A. Marshall, J. Org. Chem., 55, 1421 (1990).
   954   955   956   957   958   959   960   961   962   963   964