Page 1034 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1034

1010             of activated aromatics. Although this procedure does not avoid the special precautions
                       necessary for manipulation of elemental fluorine, it does provide a system with much
      CHAPTER 11       greater selectivity. Acetyl hypofluorite shows a strong preference for o-fluorination of
      Aromatic Substitution  alkoxy and acetamido-substituted rings. N-Fluoro-bis-(trifluoromethansulfonyl)amine
      Reactions
                       (N-fluorotriflimide) displays similar reactivity and can fluorinate benzene and activated
                       aromatics. 24

                                                               F
                                                                            3
                            CH O        +  (CF SO ) NF   CH O         +  CH O         F
                                               2 2
                                            3
                                                            3
                               3
                                                                  69%             24%
                       Several N-fluoro derivatives of 1,4-diazabicyclo[2.2.2]octane are useful for aromatic
                       fluorination. 25
                           Iodinations can be carried out by mixtures of iodine and various oxidants such as
                       periodic acid, 26  I O , 27  NO , 28  and Ce(NH   (NO   . 29  A mixture of cuprous iodide
                                                                3 6
                                                          3 2
                                             2
                                       5
                                     2
                       and a cupric salt can also effect iodination. 30
                                          CH 3                     CH 3
                                              +  CuI  +  CuCl 2
                                                                       I
                                          CH 3                     CH 3 ~70%

                       Iodination of moderately reactive aromatics can be effected by mixtures of iodine and
                       silver or mercuric salts. 31  Hypoiodites are presumably the active iodinating species.
                       Bis-(pyridine)iodonium salts can iodinate benzene and activated derivatives in the
                       presence of strong acids such as HBF or CF SO H. 32
                                                      4     3  3
                           Scheme 11.2 shows some representative halogenation reactions. Entries 1 and 2
                       involve Lewis acid–catalyzed chlorination. Entry 3 is an acid-catalyzed chlorination
                       using NCS as the reagent. Entry 4 shows a high-yield chlorination of acetanilide by
                       t-butyl hypochlorite. This seems to be an especially facile reaction, since anisole is
                       not chlorinated under these conditions, and may involve the N-chloroamide as an
                       intermediate. Entry 5 describes a large-scale chlorination done with NCS. The product
                       was used for the synthesis of sulamserod, a drug candidate.

                        24   S. Singh, D. D. DesMarteau, S. S. Zuberi, M. Whitz, and H.-N. Huang, J. Am. Chem. Soc., 109, 7194
                          (1987).
                        25
                          T. Shamma, H. Buchholz, G. K. S. Prakash, and G. A. Olahn, Israel J. Chem., 39, 207 (1999); A. J. Poss
                          and G. A. Shia, Tetrahedron Lett., 40, 2673 (1999); T. Umemoto and M. Nagayoshi, Bull. Chem. Soc.
                          Jpn., 69, 2287 (1996).
                        26   H. Suzuki, Org. Synth., VI, 700, (1988).
                        27
                          L. C. Brazdil and C. J. Cutler, J. Org. Chem., 61, 9621 (1996).
                        28
                          Y. Noda and M. Kashima, Tetrahedron Lett., 38, 6225 (1997).
                        29   T. Sugiyama, Bull. Chem. Soc. Jpn., 54, 2847 (1981).
                        30
                          W. C. Baird, Jr., and J. H. Surridge, J. Org. Chem., 35, 3436 (1970).
                        31   Y. Kobayashi, I. Kumadaki, and T. Yoshida, J. Chem. Res. (Synopses), 215 (1977); R. N. Hazeldine
                          and A. G. Sharpe, J. Chem. Soc., 993 (1952); W. Minnis, Org. Synth., II, 357 (1943); D. E. Janssen
                          and C. V. Wilson, Org. Synth., IV, 547 (1963); N.-W. Sy and B. A. Lodge, Tetrahedron Lett., 30, 3769
                          (1989).
                        32
                          J. Barluenga, J. M. Gonzalez, M. A. Garcia-Martin, P. J. Campos, and G. Asensio, J. Org. Chem., 58,
                          2058 (1993).
   1029   1030   1031   1032   1033   1034   1035   1036   1037   1038   1039