Page 1047 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1047

A special case of aromatic acylation is the Fries rearrangement, which is the  1023
              conversion of an ester of a phenol to an o-acyl phenol by a Lewis acid.
                                                                                            SECTION 11.1
                                       OCH 3           OCH 3                           Electrophilic Aromatic
                                                                                              Substitution
                                             BF 3
                                                             C H
                                                              2 5
                                                CH O   OH O
                                CH O   O CC H     3                           Ref. 59
                                           2 5
                                        2
                                  3
                                                              92%
                                    O CCH 3           OH O
                                     2
                                            ZrCl 4          CH 3
                              CH 3               CH 3          95%            Ref. 60
              Lanthanide triflates are also good catalysts for Fries rearrangements. 61


              11.1.5. Related Alkylation and Acylation Reactions
                  There are a number of variations of the Friedel-Crafts reactions that are useful in
              synthesis. The introduction of chloromethyl substituents is brought about by reaction
              with formaldehyde in concentrated hydrochloric acid and halide salts, especially zinc
                     62
              chloride. The reaction proceeds with benzene and activated derivatives. The reactive
              electrophile is probably the chloromethylium ion.
                                                   +
                              CH 2  O  +  HCl  + H +  H OCH Cl  CH 2  Cl +
                                                  2
                                                       2
                                                          CH Cl
                                                            2
                                      +  CH 2  Cl +
              Chloromethylation can also be carried out using various chloromethyl ethers and
              SnCl . 63
                  4
                                CH 3                      CH 3
                                                              CH Cl
                                          O(CH ) OCH Cl         2
                                     ClCH 2   2 4  2
                                           SnCl 4
                                CH 3                      CH 3
                  Carbon monoxide, hydrogen cyanide, and nitriles also react with aromatic
              compounds in the presence of strong acids or Friedel-Crafts catalysts to introduce
              formyl or acyl substituents. The active electrophiles are believed to be dications
              resulting from diprotonation of CO, HCN, or the nitrile. 64  The general outlines of the
              mechanisms of these reactions are given below.
              59   Y. Naruta, Y. Nishgaichi, and K. Maruyama, J. Org. Chem., 53, 1192 (1988).
              60   D. C. Harrowven and R. F. Dainty, Tetrahedron Lett., 37, 7659 (1996).
              61
                 S. Kobayahis, M. Moriwaki, and J. Hachiya, Bull. Chem. Soc. Jpn., 70, 267 (1997).
              62   R. C. Fuson and C. H. McKeever, Org. React., 1, 63 (1942); G. A. Olah and S. H. Yu, J. Am. Chem.
                 Soc., 97, 2293 (1975).
              63   G. A. Olah, D. A. Beal, and J. A. Olah, J. Org. Chem., 41, 1627 (1976); G. A. Olah, D. A. Bell,
                 S. H. Yu, and J. A. Olah, Synthesis, 560 (1974).
              64
                 M. Yato, T. Ohwada, and K. Shudo, J. Am. Chem. Soc., 113, 691 (1991); Y. Sato, M. Yato, T. Ohwada,
                 S. Saito, and K. Shudo, J. Am. Chem. Soc., 117, 3037 (1995).
   1042   1043   1044   1045   1046   1047   1048   1049   1050   1051   1052