Page 1130 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1130

1106                                CH 3  O   H SO , H O           OH
                                                          2
                                                     2
                                                        4
                                                     dioxane     Ph
      CHAPTER 12                        PhCH 2                      HO CH 3            Ref. 117
      Oxidations
                                                  O
                                            CH 3
                                                     H SO , H O  Ph  O     OH
                                                       2
                                                            2
                                                          4
                                       PhCH OCH 2      dioxane       HO CH 3           Ref. 118
                                           2
                       Under somewhat modified conditions (H SO on silica), this reaction has been success-
                                                        2  4
                       fully applied to a complex alkaloid structure. 119
                           Recently a number of procedures for epoxide ring opening that feature
                       the oxyphilic Lewis acids, including lanthanides, have been developed. LiClO
                                                                                           4
                       LiO SCF 	 Mg ClO   	 Zn O SCF   , and Yb O SCF     have been shown to
                                                3
                                                                  3
                               3
                                        4 2
                                                                      3 3
                          3
                                                    3 2
                       catalyze epoxide ring opening. 120  The cations catalyze anti addition of amines at the
                       less-substituted carbon, which is consistent with a Lewis acid–assisted nucleophilic
                       ring opening.
                                           M n+
                                              O                  OH  NR′
                                           R      :NHR′ 2      R        2
                       Styrene oxide gives mixtures of C-  and C-
 attack, as a result of competition between
                       the activated benzylic site and the primary site.
                                                                                  H )
                                                            OH                 N(C 2 5 2
                                 O             Yb(O SCF )       N(C H )   +        OH
                                                       3 3
                                                   3
                                     +  (C H ) NH        Ph        2 5 2    Ph
                                         2 5 2
                             Ph
                                                                   45%             55%
                       The same salts can be used to catalyze ring opening by other nucleophiles such as
                       azide ion 121  and cyanide ion. 122
                           A variety of reaction conditions have been developed for nucleophilic ring opening
                       by cyanide. 123  Heating an epoxide with acetone cyanohydrin (which serves as the
                       cyanide source) and triethylamine leads to ring opening at the less-substituted position.
                                                        CN
                                              O                     OH
                                                    (CH ) COH
                                                       3 2
                                                               (CH ) CHCH CN
                                                            CH 3
                                      CH (CH )      (C H ) N      2 3   2
                                                     2 5 3
                                        3
                                            2 3
                                                                          74%          Ref. 124
                       117
                          R. V. A. Orru, I. Osprian, W. Kroutil, and K. Faber, Synthesis, 1259 (1998).
                       118   A. Steinreiber, H. Hellstrom, S. F. Mayer, R. V. A. Orru, and K. Faber, Synlett, 111 (2001).
                       119
                          M. E. Kuehne, Y. Qin, A. E. Huot, and S. L. Bane, J. Org. Chem., 66, 5317 (2001).
                       120
                          M. Chini, P. Crotti, and F. Macchia, Tetrahedron Lett., 31, 4661 (1990); M. Chini, P. Crotti, L. Favero,
                          F. Macchia, and M. Pineschi, Tetrahedron Lett., 35, 433 (1994); J. Auge and F. Leroy, Tetrahedron
                          Lett., 37, 7715 (1996).
                       121   M. Chini, P. Crotti, and F. Macchia, Tetrahedron Lett., 31, 5641 (1990); P. Van de Weghe and J. Collin,
                          Tetrahedron Lett., 36, 1649 (1995).
                       122
                          M. Chini, P. Crotti, L. Favera, and F. Macchia, Tetrahedron Lett., 32, 4775 (1991).
                       123   R. A. Smiley and C. J. Arnold, J. Org. Chem., 25, 257 (1960); J. A. Ciaccio, C. Stanescu, and
                          J. Bontemps, Tetrahedron Lett., 33, 1431 (1992).
                       124
                          D. Mitchell and T. M. Koenig, Tetrahedron Lett., 33, 3281 (1992).
   1125   1126   1127   1128   1129   1130   1131   1132   1133   1134   1135