Page 1141 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1141

In many allylic oxidations, the double bond is found in a position indicating that an  1117
              allylic transposition occurs during the oxidation.
                                                                                            SECTION 12.3
                                   CH 3              CH 3                                  Allylic Oxidation
                                       CrO –pyridine
                                          3
                                            Cl
                                         CH 2  2         O  68%               Ref. 156
              Detailed mechanistic understanding of the allylic oxidation has not been developed.
              One possibility is that an intermediate oxidation state of Cr, specifically Cr(IV), acts
              as the key reagent by abstracting hydrogen. 160
                  Several catalytic systems based on copper can also achieve allylic oxidation. These
              reactions involve induced decomposition of peroxy esters (see Part A, Section 11.1.4).
              When chiral copper ligands are used, enantioselectivity can be achieved. Table 12.1
              shows some results for the oxidation of cyclohexene under these conditions.


              12.3.2. Reaction of Alkenes with Singlet Oxygen

                  Among the oxidants that add oxygen at carbon-carbon double bonds is singlet
              oxygen. 161  For most alkenes this reaction proceeds with the removal of an allylic


                 Table 12.1. Enantioselective Copper-Catalyzed Allylic Oxidation of Cyclohexene
                                    Catalyst                   Yield%          e.e.%
                                CH 3  CH 3
                               O        O
              1 a                 N   N                         43             80
                                         C(CH )
                          (CH ) C            3 3
                             3 3

                            Ph  O           O  Ph
              2 b                                               73             75
                            Ph    N       N    Ph
                              ) C            C(CH )
                          (CH 3 3                3 3
                                O
              3 c           (       ) CH                        19             42
                                    3
                                N
                          Ph
                                CO H
                                   2
              4 d                                               67             50
                              NH
              a. M. B. Andrus and X. Chen, Tetrahedron, 53, 16229 (1997).
              b. G. Sekar, A. Datta Gupta, and V. K. Singh, J. Org. Chem., 62, 2961 (1998).
              c. K. Kawasaki and T. Katsuki, Tetrahedron, 53, 6337 (1997).
              d. M. J. Sodergren and P. G. Andersson, Tetrahedron Lett., 37, 7577 (1996).
              160   P. Mueller and J. Rocek, J. Am. Chem. Soc., 96, 2836 (1974).
              161
                 H. H. Wasserman and R. W. Murray, eds., Singlet Oxygen, Academic Press, New York, 1979;
                 A. A. Frimer, Chem. Rev., 79, 359 (1979); A. Frimer, ed., Singlet Oxygen, CRC Press, Boca Raton,
                 FL, 1985; C. S. Foote and E. L. Clennan, in Active Oxygen in Chemistry, C. S. Foote, J. S. Valentine,
                 A. Greenberg, and J. F. Liebman, eds., Blackie Academic & Professional, London, 1995, pp. 105–
                 140; M. Prein and W. Adam, Angew. Chem. Int. Ed. Engl., 35, 477 (1996); M. Orfanopoulos, Molec.
                 Supramolec. Photochem., 8, 243 (2001).
   1136   1137   1138   1139   1140   1141   1142   1143   1144   1145   1146