Page 1156 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1156

1132                           O           O
                                         Cr(VI)
                                PhCH CPh      PhCCPh  + PhCH + PhCO H + PhCH  CHPh
      CHAPTER 12                    2                              2
      Oxidations                                O 7      O                CPh CPh  8
                                                                          O   O

                       Both the diketone and the cleavage products were shown to arise from an
                        -hydroxyketone intermediate (benzoin) 9.

                            O
                                             H 2 CrO 4              PhCH  CPh  + Cr(IV)  products
                        PhCH 2 CPh  PhCH  CPh      Ph  CH  CH  Ph
                                                  H 2 O   O  CrO 3 H  OH  O
                                         OH                                9
                       The coupling product is considered to involve a radical intermediate formed by one-
                       electron oxidation, probably effected by Cr(IV). Similarly, the oxidation of cyclohex-
                       anone involves 2-hydroxycylohexanone and 1,2-cyclohexanedione as intermediates. 208

                                     O          O             O
                                                    OH            O       CO 2 H
                                         Cr(VI)                                H
                                                                            CO 2

                       Owing to the efficient oxidation of alcohols to ketones, alcohols can be used as the
                       starting materials in oxidative cleavages. The conditions required are more vigorous
                       than for the alcohol to ketone transformation (see Section 12.1.1).
                           Aldehydes can be oxidized to carboxylic acids by both Mn(VII) and Cr(VI).
                       Fairly detailed mechanistic studies have been carried out for Cr(VI). A chromate ester
                       of the aldehyde hydrate is believed to be formed, and this species decomposes in
                       the rate-determining step by a mechanism similar to the one that operates in alcohol
                       oxidations. 209
                                                   OH
                            RCH  O +  H Cr (VI) O 4  RC O  CrO H   RCO H + [Cr (IV) O H] – + H +
                                                            3
                                                                                 3
                                                                       2
                                      2
                                                   H
                           Effective conditions for oxidation of aldehydes to carboxylic acids with KMnO 4
                       involve use of t-butanol and an aqueous NaH PO buffer as the reaction medium. 210
                                                                4
                                                             2
                       Buffered sodium chlorite is also a convenient oxidant. 211  Both KMnO and NaClO 2
                                                                                 4
                       can be used in the form of solid-supported materials, using silica and ion exchange
                       resins, respectively, 212  which permits facile workup of the product. Silver oxide is one
                       of the older reagents used for carrying out the aldehyde to carboxylic acid oxidation.
                       208   J. Rocek and A. Riehl, J. Org. Chem., 32, 3569 (1967).
                       209   K. B. Wiberg, Oxidation in Organic Chemistry, Part A, Academic Press, New York, 1965, pp. 172–178.
                       210
                          A. Abiko, J. C. Roberts, T. Takemasa, and S. Masamune, Tetrahedron Lett., 27, 4537 (1986).
                       211   E. Dalcanale and F. Montanari, J. Org. Chem., 51, 567 (1986); J. P. Bayle, F. Perez, and J. Cortieu,
                          Bull. Soc. Chim. Fr., 565 (1996); E. J. Corey and G. A. Reichard, Tetrahedron Lett., 34, 6973 (1993);
                          P. M. Wovkulich, K. Shankaran, J. Kiegiel, and M. R. Uskokovic, J. Org. Chem., 58, 832 (1993);
                          B. R. Babu and K. K. Balasubramaniam, Org. Prep. Proc. Int., 26, 123 (1994).
                       212
                          T. Takemoto, K. Yasuda, and S. V. Ley, Synlett, 1555 (2001).
   1151   1152   1153   1154   1155   1156   1157   1158   1159   1160   1161