Page 573 - Aircraft Stuctures for Engineering Student
P. 573

554  Elementary aeroelasticity

                  m2, .... mi, .... m, may be connected by any form of elastic weightless member. Thus,
                  if mi is the mass at a point i where the displacement is xi and 6, is the displacement at
                  the point i due to a unit load at a point j  (note from the reciprocal theorem 6, = S,),
                            mlxlS,l + m2x2Sn2 + ... + mixiSni + ... + mnxnS,, + x,,  = 0 1   (1 3.39)
                  the n equations of motion for the system are   ...
                                              ...
                            mlxlS11 + m2x2S12 +  +  mixiSli +  + rnnjt,S1, + x1 = 0
                                                           ...
                                              ...
                            mlxlS21 + m2x2622 +  + mixi62i +  + mnxnS2, + x2 = 0
                            .............................................................................................
                            mljilSil + m2x2Siz + ... + mixiSii + ... + mnxn,4 + xi = 0




                  or        .............................................................................................
                                       n
                                         mjxjS, + xi = 0  (i = 1,2, .... n)         (13.40)
                                     j= 1
                  Since each  normal  mode  of  the  system oscillates with  simple harmonic  motion,
                  then  the  solution for the ith mode takes the form x = xf sin(wt + E)  so that  jii =
                  -Jxf  sin(wt + E) = -w2xi. Equation (13.40) may therefore be written as
                                         n
                                    -JCmjsijxj +xi = o  (i = 1,2,. .. ,n)           (1 3.41)
                                        j= 1
                  For a non-trivial solution, that is xi # 0, the determinant of Eqs (13.41) must be zero.
                  Hence

                     (Jm1611 - 1)    dm2612      ...   w2mi sli    ...    w2mn s~,,
                       w2mlS21     (w2m2S22 - 1)  ...   w2miS2i    ...    w2mn 6%
                     ..................................................................................................................
                       w2ml ail      w2m2si2     ...  (w2miSii - 1)  ...   w m,S,
                                                                           2
                    I  ..................................................................................................................   I=O
                    I   w2mlsn1      Jm26n2      ...    w miSni    ...  (w2wI,,~,,,, - 1) I
                                                                                    I
                                                         2
                                                                                    (13.42)
                    The solution of Eqs (13.42) gives the normal frequencies of vibration of the system.
                  The corresponding modes may  then  be  deduced  as we  shall see in the following
                  examples.

                  Example 13.1
                  Determine the normal modes and frequencies of vibration of a weightless cantilever
                  supporting masses m/3 and m at points 1 and 2 as shown in Fig. 13.9.  The flexural
                  rigidity of the cantilever is EI.

                    The equations of motion of the system are
                                         (m/3)ij1611 + mij2Sl2 + w1 = 0                 (9
                                         (rn/3)ijlS2, + mij2S22 + wz = 0               (ii)
   568   569   570   571   572   573   574   575   576   577   578