Page 522 - Mathematical Techniques of Fractional Order Systems
P. 522

Characteristics  system.





                   Main   2 0:0138Þ  2 1:5008Þ        2 5Þ  2 8:480Þ  2 0:7Þ  2 0:3622Þ

                   &        conservative  1)  0.4,  (0.0522,0,-2.6585)
                   Properties  (0,5,0)  ICs:  a 5 1:0  LEs:ð0:0138; 0;  A     (0,  ICs:  a 5 0:35  LEs:ð0:0776; 0;  (1,1,-1)  ICs:  a 5 1:0  LEs:  ICs:ð2 8:2; 0;  a 5 1:0  LEs:ð0:0235; 0;  ICs:ð0:98; 1:8;  a 5 2:0  LEs:ð0:0168; 0;





                             4                    2
                                        0                               3
                                                             0
                             3                    0
                                        –1                              2
                             2                               –5
                                        –2        –2                    1
                             1           x         x         –10  x      x
                              x                                         0
                             0          –3        –4         –15        –1
                             –1  –2  4.5  4  3.5  3  2.5  2  1.5  1  0.5  0  –4  1  0.5  0  –0.5  –1  –1.5  –2  –2.5  –3  –6  –8  150  100  50  0  –50  –20  –25  1  0.5  0  –0.5  –1  –1.5  –2  –2
               Nonlinearities  4  3  2  1  0  z  –1  –2  –3  –4  4  z  2  z  2  1  z  z  2
                             0  2  y    1  0  -1  y  0  –1  –2  y  20 40 60 80 100120140  y  1  0  –1  y
               Quadratic  4  3  2  1  0  z  –1  –2  –3  –4  –2  –4  4.5  4  3.5  3  2.5  z  2  1.5  1  0.5  0  -2  1  0.5  0  –0.5  z  –1  –1.5  –2  –2.5  –3  –3  150  100  z  50  0  –50  –40–20 0  1  0.5  0  z  –0.5  –1  –1.5  –2  –2  –3


               and           4  3  2    0  –1     2  0       0  –5      3  2  1
               Equilibria  Attractor  1  0  –1  –2  x  –2  –3  –4  x  –2  –4  –6  x  –10  –15  –20  –25  x  0  –1  –2  x



               No     4  2  0  y  –2  –4  2  1  0  y  –1  –2  2  1  0  y  –1  –2  –3  –8  140  120  100  80  60  y  40  20  0  –20  –40  2  1  0  y  –1  –2  –3
               With

               Attractors



               Hidden  Equations  y 52 x 2 zy  z 5 y 2 2 a  z 5 2y 2 1 xz 2 a  z 52 y 1 0:1x 2 1 1:1xz 1 a  x 52 0:1y 1 a  z 5 xz 2 3y  y 52 2x 2 z  z 52 y 2 1 z 2 1 a



               17.1   x 5 y  _  _  _  _  x 52 y  _  y 5 x 1 z  _  _  x 5 y  _  y 5 z  _  _  _  y 5 x 1 z  _  x 5 2y  _  _  _
               TABLE  (1)        (2)        (3)       (4)        (5)
   517   518   519   520   521   522   523   524   525   526   527