Page 473 - Mechanics of Asphalt Microstructure and Micromechanics
P. 473

APPENDIX1





                              Eshelby’s Tensor (S) for Special Cases





              This appendix is abstracted from (Nemat-Nasser and Hori, 1998). It refers to the Eshelby
              tensor components for some specific cases. The general case is the ellipsoids embedded
              with semi-principal axes (a i ) coincide with the coordinate axes (x 1 , x 2 , x 3 ) (Figure A.1).

              FIGURE A.1  Ellipsoid coaxial               x
              with the cartesian                           3
              coordinates
                                                           a 3

                                       x       a  1           a
                                        1                      2

                                                                     x
                                                                      2
                 General form of the components for a 1  > a 2  > a 3  are:
                                      −
                               2
                 S   =    3   a I +  12ν   I
                  1111  π      1 11  π     1
                       81−ν(  )    81−ν(  )
                                      −
                               2
                 S   =    1   a I −  12ν   I
                  1122  π      2 12        1
                       81−ν(  )    81−ν)
                                    π(
                                            −
                                                    +
                                    2
                                2
                 S   =    1    ( a +  a I +  12ν  I ( + I )
                                     )
                  1212  π       1   2  12  π       1  2
                       16 1−ν(  )        16 1−ν(  )
                 The I i  and I ij  integrals are given by:
                         4π aa a
                 I =        12 3    {(  k − (
                                    F θ, )
                                           E θ,, )}k
                                  /
                      2
                             2
                  1  a −  2  a −  21 2
                     (   a )(  a )
                      1   2  1  3
                         4π aa a     aa −  a ) )  /
                                        2
                                           2 12
                                      (
                 I =        12 3    {  2  1  3  − E θ  k
                                                 (, )}
                  3  a −  2  a −  21 2
                      2
                             2
                                  /
                     (   a )(  a )      aa
                      2   3  1  3        13
                 I 1  + I 2  + I 3  = 4π
                 and
                              4π                          I −  I
                 3I +  I +  I =  ,  3aI +  aI +  aI =  3III =  2  1
                                         2
                                   2
                                              2
                                                     ,
                                                           2
                   11  12  13  2   1 11  2 12  3 13  1  12  a −  2
                              a                               a
                               1                           1  2
                                                                                   465
   468   469   470   471   472   473   474   475   476   477   478