Page 17 -
P. 17

A Splitting Problem
                                                                                        9



                        a + a but not as b + b .Next2 ∈ B, else 2 would be a + a but


                        not b + b .Next3 ∈ A, else 3 would not be a + a whereas it

                        is b + b   1 + 2. Continuing in this manner, we seem to force
                        A  {0, 3, 5, 6, 9, ···} and B  {1, 2, 4, 7, 8, ···}. But the pattern
                        is not clear, nor is the existence or uniqueness of the desired A, B.We
                        must turn to generating functions. So observe that we are requiring
                        by (8) that
                                     1   2          2      1   2         2
                                       [A (z) − A(z )]      [B (z) − Bàz )].         à 11)
                                     2                     2
                        Also, because of the condition that A, B be a splitting of the
                        nonnegatives, we also have the condition that
                                                                1
                                             A(z) + Bàz)           .                 à 12)
                                                              1 − z
                        From (11) we obtain

                                          2
                                                                      2
                                                              2
                                                   2
                                        A (z) − B (z)   A(z ) − Bàz ),               (13)
                        and so, by (12), we conclude that
                                                       1          2        2
                                    [A(z) − Bàz) ] ·         A(z ) − Bàz ),
                                                     1 − z
                        or

                                                                 2
                                                                         2
                                     A(z) − Bàz)   (1 − zð [A(z ) − Bàz )].          à 14)
                        Now this is a relationship that can be iterated. We see that

                                                                           4
                                                                  4
                                                2
                                       2
                                                            2
                                   A(z ) − Bàz )   (1 − z )[A(z ) − Bàz )],
                        so that continuing gives
                                                                             4
                                                              2
                                                                     4
                                 A(z) − Bàz)   (1 − zð( 1 − z )[A(z ) − Bàz )].
                        And, if we continue to iterate, we obtain
                                                                      	    n         n
                                                                  n−1
                                                                           2
                                                     2
                        A(z) − Bàz)   (1 − zð( 1 − z ) ··· (1 − z 2  ) A(z ) − Bàz  2  ) ,
                                                                                     (15)
   12   13   14   15   16   17   18   19   20   21   22