Page 172 -
P. 172

156    3. Representation Formulae

                              Find u satisfying the differential equation

                                                    Pu = f in Ω ∪ Ω  c
                           and the transmission conditions

                                 Rγu = ϕ −  and [Rγu] Γ =(Rγ c u − Rγu)=[ϕ]on Γ        (3.9.37)
                                            n
                           where f ∈ C (IR ) ,ϕ , [ϕ] ∈ C (Γ) are given functions and where u
                                                 −
                                       ∞
                                                           ∞
                                       0
                           satisfies the radiation condition (3.6.15).
                              We begin with some properties of the modified Calder´on projectors. Ob-
                           viously, they enjoy the same properties as the ordinary Calder´on projectors,
                           namely
                                             2
                                           C = C Ω ,  C Ω + C Ω c = I,  C   2          (3.9.38)
                                                                      Ω c = C Ω c .
                                            Ω



                           In terms of the boundary potentials and boundary operators R and S,the
                           explicit forms of C Ω and C Ω c are given by



                                              ϕ        RQ Ω PN 1 ,RQ Ω PN 2  ϕ
                                           C Ω    = −                          ,

                                               λ       SQ Ω PN 1 ,SQ Ω PN 2  λ
                                                                                       (3.9.39)

                                              ϕ      RQ Ω cPN 1 ,RQ Ω cPN 2  ϕ
                                          C Ω c   =                            .

                                               λ      SQ Ω cPN 1 ,SQ Ω cPN 2  λ
                           If we denote the jump of the boundary potentials u across Γ by
                                               [QPN j ]= Q Ω cPN j −Q Ω PN j
                           then, as a consequence of (3.8.27), we have the following jump relations for
                           any ϕ, λ ∈ C (Γ) across Γ:
                                       ∞
                                            [RQPN 1 ϕ]= ϕ, [RQPN 2 λ]    = 0 ,
                                                                                       (3.9.40)
                                             [SQPN 1 ϕ]= 0 , [SQPN 2 λ]  = λ.
                              From the representation formulae (3.7.10), (3.7.11) and (3.7.13), (3.7.14)
                           we arrive at the representation formula for the transmission problem,

                             u(x)  =     E(x, y)f(y)dy + M(x; u)
                                      IR n
                                        2m−1 2m− −1
                                                             p
                                                        ∂
                                      +                     E(x, y)    P p+ +1 γ c u(y) − γ  u(y) ds y
                                                       ∂n y
                                          =0  p=0
                                                  Γ

                                   =     E(x, y)f(y)dy + M(x; u)                        (3.9.41)
                                      IR n
                                        2m−1 2m− −1

                                      +           K pP p+ +1{N 1[ϕ]+ N 2[λ]}
                                          =0  p=0
                                                                                c
                                                                    for x ∈ Ω ∪ Ω ,x  ∈ Γ.
   167   168   169   170   171   172   173   174   175   176   177