Page 183 - Materials Chemistry, Second Edition
P. 183
164 Life Cycle Assessment of Wastewater Treatment
Kumar, V., L. Wati, P. Nigam, I. M. Banat, B. S. Yadav, D. Singh, and R. Marchant. 1998.
Decolorization and biodegradation of anaerobically digested sugarcane molasses spent
wash effluent from biomethanation plants by white-rot fungi. Process Biochemistry 33
(1): 83–88.
Kümmerer, K. 2008. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks.
Springer Science & Business Media, Springer: Berlin, Germany.
Kümmerer, K. 2009. The presence of pharmaceuticals in the environment due to human use—
present knowledge and future challenges. Journal of Environmental Management 90
(8): 2354–2366.
Langford, K. H., and K. V. Thomas. 2009. Determination of pharmaceutical compounds in
hospital effluents and their contribution to wastewater treatment works. Environment
International 35 (5): 766–770.
Larsson, D. G. J., C. de Pedro, and N. Paxeus. 2007. Effluent from drug manufactures con-
tains extremely high levels of pharmaceuticals. Journal of Hazardous Materials 148
(3): 751–755.
Le Corre, K. S., C. Ort, D. Kateley, B. Allen, B. I. Escher, and J. Keller. 2012. Consumption-
based approach for assessing the contribution of hospitals towards the load of phar-
maceutical residues in municipal wastewater. Environment International 45: 99–111.
Levenspiel, O., and C. Levenspiel. 1972. Chemical Reaction Engineering. Vol. 2: Wiley, New
York, NY.
Lienert, J., T. Bürki, and B. I. Escher. 2007. Reducing micropollutants with source control:
Substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science and
Technology 56 (5): 87–96.
Liu, Z.-H., Y. Kanjo, and S. Mizutani. 2009. Removal mechanisms for endocrine disrupt-
ing compounds (EDCs) in wastewater treatment—physical means, biodegradation, and
chemical advanced oxidation: A review. Science of the Total Environment 407 (2):
731–748.
Lloret, L., G. Eibes, T. A. Lú-Chau, M. T. Moreira, G. Feijoo, and J. M. Lema. 2010. Laccase-
catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering
Journal 51 (3): 124–131.
Lloret, L., G. Eibes, G. Feijoo, M. T. Moreira, J. M. Lema, and F. Hollmann. 2011.
Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization
and use for the removal of estrogens. Biotechnology Progress 27 (6): 1570–1579.
Lloret, L., G. Eibes, G. Feijoo, M. T. Moreira, and J. M. Lema. 2012. Degradation of estrogens
by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane
reactors. Journal of Hazardous Materials 213: 175–183.
Lorenzo, M., D. Moldes, and M. Á. Sanromán. 2006. Effect of heavy metals on the produc-
tion of several laccase isoenzymes by Trametes versicolor and on their ability to deco-
lourise dyes. Chemosphere 63 (6): 912–917.
Lu, T., Q. Zhang, and S. Yao. 2017. Removal of dyes from wastewater by growing fungal
pellets in a semi-continuous mode. Frontiers of Chemical Science and Engineering:
11 (3): 338–345.
Macellaro, G., C. Pezzella, P. Cicatiello, G. Sannia, and A. Piscitelli. 2014. Fungal laccases
degradation of endocrine disrupting compounds. BioMed Research International 2014,
614038: 1–8.
Mäkelä, M. R., K. S. Hildén, T. K. Hakala, A. Hatakka, and T. K. Lundell. 2006. Expression
and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown
on wood. Current Genetics 50 (5): 323–333.
Manzanares, P., S. Fajardo, and C. Martin. 1995. Production of ligninolytic activities when treat-
ing paper pulp effluents by Trametes versicolor. Journal of Biotechnology 43 (2): 125–132.