Page 336 - A First Course In Stochastic Models
P. 336

RUIN PROBABILITIES                      331

                where the load factor ρ is defined by ρ = λµ/σ. Applying the key renewal theorem
                from Section 8.2 to the renewal equation (8.4.8), we find

                                           lim Q (x) = γ,
                                                ∗
                                          x→∞
                where the constant γ is given by

                                                                 −1



                                   (1 − ρ)  λ  ∞   δy
                               γ =               ye {1 − B(y)} dy  .
                                     δ     σ  0
                This yields the asymptotic expansion
                                               −δx
                                     Q(x) ∼ γ e    as x → ∞,                 (8.4.9)
                where f (x) ∼ g(x) as x → ∞ means that lim x→∞ f (x)/g(x) = 1. This is an
                extremely important result. The asymptotic expansion is very useful for practical
                purposes in view of the remarkable finding that already for relatively small values
                of x the asymptotic estimate predicts quite well the exact value of Q(x) when the
                load factor ρ is not very small. To illustrate this, Table 8.4.1 gives the numerical
                values of Q(x) and the asymptotic estimate Q asy (x) = γ e −δx  for several examples.
                                                                    2
                We take µ = 1 and σ = 1. The squared coefficient of variation c of the claim size
                                                                    X
                                                  2
                                                                            2
                     2
                X is c = 0 (deterministic distribution), c = 0.5 (E 2 distribution) and c = 1.5
                     X                            X                         X
                (H 2 distribution with balanced means). The load factor ρ is 0.2, 0.5 and 0.8. It
                turns out that the closer ρ is to 1, the earlier the asymptotic expansion applies.
                              Table 8.4.1  Exact and asymptotic values for Q(x)
                                  c 2  = 0           c 2  = 0.5        c 2  = 1.5
                                   X                 X                  X
                          x    Q(x)   Q asy (x)   Q(x)   Q asy (x)   Q(x)   Q asy (x)
                 ρ = 0.2  0.5  0.11586  0.07755  0.12462  0.14478   0.13667  0.09737
                          1   0.02288  0.03007   0.07146  0.07712   0.09669  0.07630
                          2   0.00196  0.00210   0.02144  0.02188   0.05234  0.04685
                          3   0.00015  0.00015   0.00617  0.00621   0.03025  0.02877
                          5   7.20E-7  7.20E-7   0.00050  0.00050   0.01095  0.01085
                 ρ = 0.5  0.5  0.35799  0.30673  0.37285  0.38608   0.39390  0.34055
                          1   0.17564  0.18817   0.26617  0.26947   0.31629  0.28632
                          2   0.05304  0.05356   0.13106  0.13126   0.21186  0.20239
                          5   0.00124  0.00124   0.01517  0.01517   0.07179  0.07149
                         10   2.31E-6  2.31E-6   0.00042  0.00042   0.01262  0.01262
                 ρ = 0.8  0.5  0.70164  0.67119  0.71197  0.71709   0.72705  0.70204
                          1   0.55489  0.56312   0.62430  0.62549   0.66522  0.65040
                          2   0.36548  0.36601   0.47582  0.47589   0.56345  0.55825
                          5   0.10050  0.10050   0.20959  0.20959   0.35322  0.35299
                         10   0.01166  0.01166   0.05343  0.05343   0.16444  0.16444
   331   332   333   334   335   336   337   338   339   340   341