Page 167 - A Course in Linear Algebra with Applications
P. 167

5.3:  Operations  with  Subspaces           151

        15.  Find the  dimension  of the  quotient  space  P n(R)/U  where
        U  is the  subspace  of  all  real  constant  polynomials.

        16.  Let  V  be an  n-dimensional  vector  space  over  an  arbitrary
        field.  Prove  that  there  exists  a  quotient  space  of  V  of  each
        dimension  i  where  0 <  i  <  n.
        17.  Let  V  be  a  finite-dimensional  vector  space  and  let  U  and
        W  be  two  subspaces  of  V.  Prove  that


                   dim((C7 +  W)/W)    =  dim(U/(U   n  W)).
   162   163   164   165   166   167   168   169   170   171   172