Page 277 - A Course in Linear Algebra with Applications
P. 277

8.1:  Basic  Theory  of  Eigenvectors       261


        Theorem     8.1.1
        Let  A  be an  n  x  n  complex  matrix.
             (i)  The  eigenvalues  of  A  are  precisely  the  n  roots  of  the
             characteristic  polynomial  &et(A  —  xl n);
             (ii)  the  eigenvectors  of  A  associated  with  an  eigenvalue  c
             are  the  non-zero  vectors  in  the  null  space  of  the  matrix
             A-cI n.
             Thus  in  Example  8.1.1  the  characteristic  polynomial  of
        the  matrix  is

                         2-x       - 1  =  x 2  -  6x  + 10.
                           2       4-x

        The  eigenvalues  are  the  roots  of  the  characteristic  equation
         2
        x  —  6x  +  10  =  0, that  is,  c\  =  3 +  \f—T  and  c^  — 3 —  \J—1;
        the  eigenspaces  of  c\  and  c^ are  generated  by  the  vectors


                    ( _ l  +  v /3T ) / 2     -(l  +  V=l)/2
                                      and
                                                     1
        respectively.

        Example     8.1.2
        Find  the  eigenvalues  of the  upper  triangular  matrix

                  (a\\-x        ai2     ai3           « l n  \
                       0      a 22  -  x  a 23        0-2n

                  \     0         0      0          a nn  — x /

        The  characteristic  polynomial  of this  matrix  is


                                                       i
                    an  -  x    a 12    a 13          a n
                       0      a 22  -  x  a 23        0>2n
                       0         0       0         Ojn.n.  ^
   272   273   274   275   276   277   278   279   280   281   282