Page 11 - Adsorbents fundamentals and applications
P. 11
viii CONTENTS
8.2.3. Density Functional Theory Methods / 203
8.2.4. Ab Initio Methods / 204
8.2.5. Basis Set / 205
8.2.6. Effective Core Potentials / 205
8.2.7. Model Chemistry and Molecular Systems / 206
8.2.8. Natural Bond Orbital / 207
8.2.9. Adsorption Bond Energy Calculation / 208
8.3. Nature of π-Complexation Bonding / 208
8.3.1. Understanding π-Complexation Bond through
Molecular Orbital Theory / 209
8.3.2. π-Complexation Bonds with Different
Cations / 212
8.3.3. Effects of Different Anions and
Substrates / 213
8.4. Bulk Separations by π-Complexation / 216
8.4.1. Deactivation of π-Complexation Sorbents / 216
8.4.2. CO Separation by π-Complexation / 216
8.4.3. Olefin/Paraffin Separations / 219
8.4.4. Aromatics/Aliphatics Separation / 220
8.4.5. Possible Sorbents for Simulated Moving-Bed
Applications / 222
8.5. Purification by π-Complexation / 223
8.5.1. Removal of Dienes from Olefins / 224
8.5.2. Removal of Aromatics from Aliphatics / 226
References / 227
9 Carbon Nanotubes, Pillared Clays, and Polymeric Resins 231
9.1. Carbon Nanotubes / 231
9.1.1. Catalytic Decomposition / 233
9.1.2. Arc Discharge and Laser Vaporization / 241
9.1.3. Adsorption Properties of Carbon
Nanotubes / 243
9.2. Pillared Clays / 253
9.2.1. Syntheses of PILCs / 253
9.2.2. Micropore Size Distribution / 256
9.2.3. Cation Exchange Capacity / 258
9.2.4. Adsorption Properties / 260
9.2.5. PILC and Acid-Treated Clay as Supports / 262
9.3. Polymeric Resins / 264
9.3.1. Pore Structure, Surface Properties, and
Applications / 266