Page 8 - Adsorptionbypowders & poroussolids muyace
P. 8
8.2.2. Dubinin-Stoeckli methods 224
8.2.3. Nonane pre-adsorption 226
8.2.4. Generalized adsorption isotherm (GAI) 226
8.3. Microcalorimetric methods 227
8.3.1. Immersion microcalorimetry 227
Immersion of various dry samples in the same liquid 227
Immersion of dry samples in liquids of different molecular size 228
Immersion of samples partially pre-covered by vapour adsorption 229
8.3.2. Gas adsorption microcalorimetry 229
8.4. Modelling micropore filling: theory and simulation 230
8.4.1. Potential energy functions 230
8.4.2. Horvath-Kmazoe (HK) method 231
8.4.3. Computer simulation and density functional theory 233
References 234
Chapter 9. Adsorption by Active Carbons 237
9.1. Introduction 237
9.2. Formation and structure of carbon blacks 240
9.3. Physisorption of gases by carbon black and graphite 242
9.3.1. Adsorption of nitrogen 242
9.3.2. Adsorption of noble gases 247
9.3.3. Adsorption of organic vapours 250
9.4. Carbonization and activation 252
9.5. Physisorption of gases by activated carbons 255
9.5.1. Adsorption of argon, nitrogen and carbon dioxide 255
9.5.2. Adsorption of organic vapours 264
9.5.3. Adsorption of helium 273
9.5.4. Adsorption of water vapour 276
9.6. Immersion microcalorimetry and adsorption from solution 279
9.6.1. Immersion microcalorimetry 279
9.6.2. Adsorption from solution 280
References 28 1
Chapter 10. Adsorption by Metal Oxides 287
10.1. Introduction 287
10.2. Physisorption of gases by silica powders and gels 288
10.2.1. Pyrogenic and crystalline silicas 288
10.2.2. Precipitated silicas 297
10.2.3. Silica gels 299
Dehydroxylafed gels 307
10.3. Aluminas: structure, texture and physisorption 311
10.3.1. Activated alumina 3 1 1
10.3.2. Aluminium trihydroxides 3 1 1
10.3.3. Aluminium oxide-hydroxides 3 13
10.3.4. Alumina structures 3 14