Page 667 - Advanced_Engineering_Mathematics o'neil
P. 667

18.3 Dirichlet Problem for a Disk  647


                                        There remains to evaluate the integrals:
                                                            1     π                 81
                                                                            2
                                                                      2
                                                                 81cos (ξ)sin (ξ)dξ =  π,
                                                           2π  −π                    4

                                                         π                           0        if n  = 4

                                                                2    2
                                                           81cos (ξ)sin (ξ)cos(nξ)dξ =
                                                                                     −81π/8   if n = 4,
                                                        −π
                                        and
                                                                 π

                                                                             2
                                                                       2
                                                                  81cos (ξ)sin (ξ)sin(nξ)dξ = 0.
                                                                −π
                                        The solution is
                                                                                      r
                                                                      1 81π    1 81π      4
                                                             U(r,θ) =       −            cos(4θ)
                                                                     2π 4     π 8     3
                                                                     81   1  4
                                                                   =    − r cos(4θ).
                                                                      8   8
                                        To convert this solution to rectangular coordinates, use the fact that
                                                                                      2
                                                                            4
                                                                cos(4θ) = 8cos (θ) − 8cos (θ) + 1
                                        to obtain
                                                                  81  1   4   4      4   2     4
                                                         U(r,θ) =   − (8r cos (θ) − 8r cos (θ) +r )
                                                                  8   8
                                                                  81  1   4   4      2 2   2     4
                                                               =    − (8r cos (θ) − 8r r cos (θ) +r ).
                                                                  8   8
                                        Then
                                                                  81  1
                                                                                2
                                                                           4
                                                                                    2
                                                                                                2 2
                                                                                            2
                                                                                       2
                                                          u(x, y) =  − (8x − 8(x + y )x + (x + y ) )
                                                                  8   8
                                                                  81  1
                                                                                   2
                                                                              4
                                                                          4
                                                                                    2
                                                                =   − (x + y − 6x y ).
                                                                  8   8
                               SECTION 18.3        PROBLEMS
                            In each of Problems 1 through 8, write the solution of the  In each of Problems 9 through 12, solve the problem by
                            Dirichlet problem for the disk, with the given boundary  converting it to polar coordinates.
                            data.

                            1. R = 3, f (θ) = 1                            9. ∇ u(x, y)= 0for x + y < 16,
                                                                               2
                                                                                               2
                                                                                            2
                            2. R = 3, f (θ) = 8cos(4θ)                          u(x, y)= x for x + y = 16
                                                                                                2
                                                                                        2
                                                                                            2
                                          2
                            3. R = 2, f (θ) = θ − θ                        10. ∇ u(x, y)= 0for x + y < 9,
                                                                               2
                                                                                            2
                                                                                               2
                            4. R = 5, f (θ) = θ cos(θ)                          u(x, y)= x − y for x + y = 9
                                                                                               2
                                                                                                  2
                            5. R = 4, f (θ) = e −θ                         11. ∇ u(x, y)= 0for x + y < 4,
                                                                                            2
                                                                               2
                                                                                               2
                                           2
                            6. R = 1, f (θ) = sin (θ)                           u(x, y)= x − y for x + y = 4
                                                                                        2
                                                                                                    2
                                                                                           2
                                                                                                2
                            7. R = 8, f (θ) = 1 − θ  2                     12. ∇ u(x, y)= 0for x + y < 25,
                                                                                               2
                                                                               2
                                                                                            2
                            8. R = 4, f (θ) = θe 2θ                             u(x, y)= xy for x + y = 25
                                                                                             2
                                                                                                2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  15:27  THM/NEIL   Page-647        27410_18_ch18_p641-666
   662   663   664   665   666   667   668   669   670   671   672