Page 157 - Advanced Linear Algebra
P. 157

Modules Over a Principal Ideal Domain  141





                                       •          d
                                         gcd ²Á
                                               ³
            Thus,   ann ² #³  if and only if    º »  and so ann ² #³ ~º » . For the second





            statement, if ²Á ³ ~    then there exist  Á    9  for which   b   ~    and so






                            # ~ ²  b   ³# ~   #  ºº #»» ‹ ºº#»»
            and so  ºº #»» ~ ºº#»» . Of course, if  ºº #»» ~ ºº#»»  then   ² #³ ~       .  Finally,  if



             ² #³ ~    , then

                                          ~ ² #³~
                                              gcd ²Á
                                                    ³
            and so ²Á ³ ~   .…

            The Decomposition of Cyclic Modules
            The following theorem shows how  cyclic  modules  can  be  composed  and
            decomposed.
            Theorem 6.4 Let  4   be an  -module.
                                  9
            1  )(Composing cyclic modules )  If  "Á à Á "  4  have relatively prime


               orders, then
                                 ²" b Ä b " ³ ~  ²" ³Ä ²" ³




               and
                              ºº" »» l Ä l ºº" »» ~ ºº" b Ä b " »»




               Consequently, if
                                      4~ ( b Ä b (
                                      have relatively prime orders, then the sum is
               where  the submodules  (
               direct.
            2  )(Decomposing cyclic modules )  If   ²#³ ~    Ä          where the        's are
               pairwise relatively prime, then   has the form
                                        #
                                       # ~ " bÄb"
               where  ²" ³ ~       and so

                           ºº#»» ~ ºº" b Ä b " »» ~ ºº" »» l Ä l ºº" »»




            Proof. For part 1), let       ~  ,  ³          ²"    •  Ä        and # • " bÄb"    . Then


                            #

            since   annihilates  , the order of   divides  . If  ²        #  ³   is a proper divisor of  ,
                                        #

            then for some index  , there is a prime  “      for which  °        annihilates  . But
                                                                        #
             °  annihilates each   for    £  . Thus,
                             "
   152   153   154   155   156   157   158   159   160   161   162