Page 157 - Advanced Linear Algebra
P. 157
Modules Over a Principal Ideal Domain 141
d
gcd ²Á
³
Thus, ann ² #³ if and only if º » and so ann ² #³ ~º » . For the second
statement, if ²Á ³ ~ then there exist Á 9 for which b ~ and so
# ~ ² b ³# ~ # ºº #»» ºº#»»
and so ºº #»» ~ ºº#»» . Of course, if ºº #»» ~ ºº#»» then ² #³ ~ . Finally, if
² #³ ~ , then
~ ² #³~
gcd ²Á
³
and so ²Á ³ ~ .
The Decomposition of Cyclic Modules
The following theorem shows how cyclic modules can be composed and
decomposed.
Theorem 6.4 Let 4 be an -module.
9
1 )(Composing cyclic modules ) If "Á Ã Á " 4 have relatively prime
orders, then
²" b Ä b " ³ ~ ²" ³Ä ²" ³
and
ºº" »» l Ä l ºº" »» ~ ºº" b Ä b " »»
Consequently, if
4~ ( b Ä b (
have relatively prime orders, then the sum is
where the submodules (
direct.
2 )(Decomposing cyclic modules ) If ²#³ ~ Ä where the 's are
pairwise relatively prime, then has the form
#
# ~ " bÄb"
where ²" ³ ~ and so
ºº#»» ~ ºº" b Ä b " »» ~ ºº" »» l Ä l ºº" »»
Proof. For part 1), let ~ , ³ ²" Ä and # " bÄb" . Then
#
since annihilates , the order of divides . If ² # ³ is a proper divisor of ,
#
then for some index , there is a prime for which ° annihilates . But
#
° annihilates each for £ . Thus,
"