Page 189 - Advanced Linear Algebra
P. 189

The Structure of a Linear Operator  173




                                    v        Ä      c        y
                                        x     Ä     c        {
                                    x                    {
                              ´µ ~ x    8        Æ   Å   {
                                    x                    {
                                      Å  Å  Æ      c      c2
                                    w        Ä     c      c   z
            This matrix is known as the companion matrix  for the polynomial  ²%³ .


            Definition The companion matrix  of a monic polyomial
                             ²%³ ~   b  %bÄb      c     %  c   b %


            is the matrix
                                      v        Ä      c        y
                                          x     Ä     c        {
                                      x                   {
                             *´ ²%³µ ~ x        Æ      Å  {                …
                                      x                   {
                                        Å  Å  Æ      c      c2
                                      w        Ä     c      c   z
            Note that companion  matrices  are defined only for  monic  polynomials.
            Companion matrices are nonderogatory. Also, companion matrices are precisely
            the matrices that represent operators on  -cyclic subspaces.

            Theorem 7.12 Let  ²%³  -´%µ .
             )
            1   A companion matrix (~ *´ ²%³µ  is nonderogatory; in fact,
                                      ²%³ ~   ²%³ ~  ²%³
                                             (
                                     (
             )    is cyclic if and only if   can be represented by a companion matrix, in

            2   =
               which case the representing basis is  -cyclic.

            Proof. For part 1), let  ; ~²  Á Ã Á   ³  be the standard basis for  -    .  Since


             ~ (  c        for    ‚  , it follows that for any polynomial   ²%³,

                     ²(³ ~     ¯    ²(³  ~   for all     ¯   ²(³  ~




            If  ²%³ ~   b  %bÄb     c     %  c   b %   , then
                             c                 c          c
                     ²(³  ~        (   b (   ~                       c        ~
                                                     b
                                                               b
                              ~                 ~         ~
            and so  ²(³  ~   , whence  ²(³ ~   . Also, if


                           ²%³ ~   b  %bÄb       c     %  c   b   %


            is nonzero and has degree    , then



                        ²(³  ~     b    b Äb     c       b          b     £
   184   185   186   187   188   189   190   191   192   193   194