Page 266 - Advanced Linear Algebra
P. 266
250 Advanced Linear Algebra
Then Theorem 10.20 implies that ~ . Hence,
~² b Ä b ³ ² b Ä b ³
~² b Ä b ³² b Ä b ³
~
Á
It follows that for any polynomial ²%Á &³ in two variables,
² Á ³ ~ ² Á ³
Á
So if we choose ²%Á &³ with the property that Á ~ ² Á ³ are distinct, then
² Á ³ ~
Á
Á
and we can also choose ²%³ and ²%³ so that ² Á ³ ~ for all and
² Á ³ ~ for all . Then
² ² Á ³³ ~ ² Á ³ ~
Á Á
~ 8 9 8 9 ~ ~
and similarly, ² ² Á ³³ ~ .
Positive Operators
One of the most important cases of the functional calculus is ²%³ ~ j . %
Recall that the quadratic form associated with a linear operator is
8 ²#³ ~ º #Á #»
Definition A self-adjoint linear operator ²= ³ is
B
)
1 positive if 8²#³ for all # =
2 positive definite if 8²#³ for all # £ .
)
Theorem 10.22 A self-adjoint operator on a finite-dimensional inner product
space is
1 positive if and only if all of its eigenvalues are nonnegative
)
2 positive definite if and only if all of its eigenvalues are positive.
)
Proof. If 8²#³ and # ~ # , then
º #Á#» ~ º#Á#»