Page 266 - Advanced Linear Algebra
P. 266

250    Advanced Linear Algebra




            Then Theorem 10.20 implies that    ~        . Hence,




                          ~²       b Ä b        ³ ²       b Ä b        ³




                            ~²                   b Ä b        ³²                   b Ä b        ³

                            ~



                                Á
            It follows that for any polynomial  ²%Á &³  in two variables,
                                  ² Á ³ ~     ² Á      ³


                                           Á

            So if we choose  ²%Á &³  with the property that   Á   ~  ² Á            ³  are distinct, then
                                     ² Á ³ ~

                                                 Á
                                              Á


            and we can also choose   ²%³  and   ²%³  so that   ²  Á  ³ ~       for  all    and

             ²  Á  ³ ~       for all   . Then
                         ² ² Á ³³ ~           ²   Á  ³      ~


                                    Á              Á
                                 ~  8         9  8         9  ~         ~




            and similarly,  ² ² Á ³³ ~   .…
            Positive Operators
            One  of  the  most  important cases of the functional calculus is   ²%³ ~ j  . %
            Recall that the quadratic form associated with a linear operator   is


                                      8 ²#³ ~ º #Á #»

            Definition A self-adjoint linear operator  ²= ³  is
                                                 B

             )
            1   positive  if 8²#³ ‚    for all #  =

            2   positive definite  if 8²#³ €    for all # £   .…
             )

            Theorem 10.22 A self-adjoint operator   on a finite-dimensional inner product

            space is
            1   positive if and only if all of its eigenvalues are nonnegative
             )
            2   positive definite if and only if all of its eigenvalues are positive.
             )


            Proof. If 8²#³ ‚    and  # ~ # , then


                                      º #Á#» ~ º#Á#»
   261   262   263   264   265   266   267   268   269   270   271