Page 356 - Advanced Linear Algebra
P. 356

340    Advanced Linear Algebra



            1)(Linearity )

                                     ² % b  & ³ ~  % b  &


                                    2
               for any  Á    -
            2)(Continuity )
                                                 º% Á&» ~ º%Á&» and   º&Á% » ~ º&Á%»  …

                             2                  2
            The next result gives a useful “Cauchy-type” description of convergence.

            Theorem 13.20 Let A ~¸% “    2¹  be an arbitrary family of vectors in an

            inner product space  .
                            =
             )
            1  If the sum
                                            %
                                            2
               converges, then for any   €  , there exists a finite set 0 ‹2  such that

                               1q 0 ~ JÁ 1  finite  ¬    %   i  
                                                  i
                                                    1
                                                    )
             )
            2   If   is a Hilbert space, then the converse of 1  also holds.
                 =
                         )
                                               :
            Proof. For part 1 , given   €  , let : ‹2 ,   finite, be such that

                             ;Š :Á ;  finite  ¬   % c % 
                                             i
                                                      i

                                               ;         2
            If 1q : ~ J ,   finite, then
                       1
                     i      i  i      %    ~  b   ²    %  %  ³  c  ²    %  %  c  %  ³  i   c
                       1          1       :           :

                               i        i   i     % c% b  % c%   2  b  2  ~
                                                      i

                                 1r:           :
                      )
            As for part 2 , for each  €  , let 0 ‹2  be a finite set for which


                             1q 0 ~ JÁ 1  finite  ¬   %    i  
                                                i

                                                   1
            and let
                                       &~      %

                                             0
   351   352   353   354   355   356   357   358   359   360   361