Page 394 - Advanced Linear Algebra
P. 394

378    Advanced Linear Algebra




            Theorem 14.8 There is a unique linear transformation
                                           Z
                                 Z
                                                               Z
                                                          Z
                          ¢
                          B²<Á < ³ n  B²=Á = ³ ¦  B²< n =Á < n = ³
            defined by   ²n   ³ ~    p     where


                                  ²p ³²" n #³ ~ " n #


            Moreover,   is an embedding and is an isomorphism if all vector spaces are

            finite-dimensional. Thus, the tensor product      n   of linear transformations is
            (via this embedding ) a linear transformation on tensor products.…
            Let us note a few special cases of the previous theorem.
                                              —
            Corollary 14.9 Let us use the symbol  ?  @ Æ   to denote the fact that there is an
            embedding  of  ?    into  @   that is an isomorphism if  ?   and  @   are finite-
            dimensional.
                       Z
             )
            1  Taking <~ -   gives
                                  i
                                                           Z
                                 <n ²= Á = ³ Æ  Z  —  B  ²< n = Á = ³
                                     B
                where
                                   ²  n ³²" n #³ ~  ²"³ ²#³


                for   < i .
             )
                       Z
                                  Z
            2  Taking <~ -   and = ~ -  gives
                                             —
                                           i
                                       i
                                     <n = Æ     ²< n = ³ i
                where
                                   ²  n  ³²" n #³ ~  ²"³ ²#³
             )
                                                  Z
            3   Taking  =~ -   and noting that  ²-Á = ³ š =  Z    and  < n - š <   gives
                                            B
                (letting >~ =  Z )
                                              —
                                                      Z
                                B      Z     Ʋ<Á < ³ n >  B  ²<Á < n > ³
                where


                                     ² n $³²"³ ~ " n $
             )
                       Z
                                           (
            4   Taking <~ -  and = ~ -  gives  letting > ~ =  Z  )
                                             —
                                       i
                                     <n > ÆB     ²<Á > ³
                where
                                      ²  n $³²"³ ~  ²"³$                   …
   389   390   391   392   393   394   395   396   397   398   399