Page 460 - Advanced Linear Algebra
P. 460

444    Advanced Linear Algebra



                               im(W )              im(W)
                                   *


                                 u                   v
                                   1
                                       W(u )=s v      1
                                              k k
                                          k
                    ONB of       u     W (v )=s u    v       ONB of
                  eigenvectors     r       k   k k    r    eigenvectors
                     for W*W                                  for WW*
                                 u r+1    W         v r+1



                                 u n      W         v m

                               ker(W)              ker(W )
                                                        *
                                       Figure 17.1

            For  ~ Á Ã Á   , the positive numbers   ~ j       are called the singular values

            of  . If we set  ~    for   €   , then


                                        i
                                                   "~   "

            for  ~ Á Ã Á   . We can achieve some “symmetry” here between   and     i  by


            setting # ~ ² °  ³ "           for each      , giving
                                            #     

                                     "~ F

                                                   €
            and
                                            "      
                                     i
                                     #~ F

                                                    €
            The vectors #Á à Á #       are orthonormal, since if  Á      , then

                   º# Á # »~   º " Á " »~    º       i  " Á " »~  º" Á " »~       Á













                                                              iž

            Hence, ²# ÁÃÁ# ³  is an orthonormal basis for im    ² ³ ~ ker ² ³  , which can be


            extended to an orthonormal basis  9 ~²# Á Ã Á # ³   for  =  ,  the  extension


                ÁÃÁ# ³ being an orthonormal basis for ker ² ³. Moreover, since
                                                     i

            ²#  b

                                      i
                                      #~   " ~   #




            the  vectors  #Á Ã Á #       are eigenvectors for     i  with the same eigenvalues
                           ~   as for   i     . This completes the picture in Figure 17.1.
   455   456   457   458   459   460   461   462   463   464   465