Page 491 - Advanced Linear Algebra
P. 491

The Umbral Calculus   475



            In particular, º  “     %     »  ~         and so the formal power series representation for
            this functional is

                                   B  º  “      %     »  B

                            ²!³ ~           ! ~        ! ~      !
                                   ~              ~    !  !
            which is the exponential series. If      !  is evaluation at  , then

                                        !  !
                                         ~    ² b ³!
            and so the product of evaluation at   and  evaluation at   is evaluation at


             b .…
            When we are thinking of a delta series   <  as a linear functional, we refer to
            it as a delta functional . Similarly, an invertible series   <   is referred to as an
            invertible functional. Here are some simple consequences of the development
            so far.

            Theorem 19.2
             )
            1  For any   < ,
                                           B  º ²!³ “ % »

                                     ²!³ ~            !
                                                  [
                                           ~
             )
            2  For any   F ,

                                             º! “  ²%³»
                                     ²%³ ~            %
                                                  [
                                           ‚
             )
            3  For any  Á    < ,



                         º ²!³ ²!³ “ % » ~   45  º ²!³ “ % »º ²!³ “ %    c     »

                                         ~
            4)  ² ²!³³ € deg   ²%³ ¬ º ²!³ “  ²%³» ~
             )
            5   If  ²  ³ ~    for all   ‚   , then

                              B
                            L          c   M      ²!³  ²%³ ~           º  ²!³ “  ²%³»

                               ~                ‚
               where the sum on the right is a finite one.
             )
            6   If  ²  ³ ~    for all   ‚   , then

                      º  ²!³“ ²%³»~º  ²!³“ ²%³» for all    ‚  ¬ ²%³~ ²%³


             )
            7   If deg   ²%³ ~    for all   ‚   , then

                      º ²!³“  ²%³»~º ²!³“  ²%³» for all    ‚  ¬ ²!³~ ²!³
   486   487   488   489   490   491   492   493   494   495   496