Page 437 - Advanced engineering mathematics
P. 437

12.10 Curvilinear Coordinates  417


                                           A similar, but more complicated, calculation shows that spherical coordinates are orthogonal
                                        curvilinear coordinates.
                                           In rectangular coordinates, the differential element ds of arc length is given by

                                                                                   2
                                                                     2
                                                                            2
                                                                                         2
                                                                  (ds) = (dx) + (dy) + (dz) .                  (12.12)
                                        We assume that this differential element of arc length is given in terms of the orthogonal
                                        curvilinear coordinates q 1 ,q 2 ,q 3 by the quadratic form

                                                                           3  3

                                                                       2         2
                                                                    (ds) =      h dq i dq j .
                                                                                 ij
                                                                           i=1  j=1
                                        The numbers h ij are called scale factors for the curvilinear coordinate system. We want to
                                        determine these scale factors so that we can compute such quantities as arc length, area,
                                        volume, gradient, divergence and curl in curvilinear coordinates. Begin by differentiating
                                        equations (12.11):

                                                                     ∂x       ∂x      ∂x
                                                                dx =    dq 1 +  dq 2 +   dq 3 ,
                                                                     ∂q 1    ∂q 2     ∂q 3
                                                                     ∂y       ∂y      ∂y
                                                                dy =    dq 1 +  dq 2 +   dq 3 ,
                                                                     ∂q 1    ∂q 2     ∂q 3
                                                                     ∂z       ∂z      ∂z
                                                                dz =    dq 1 +  dq 2 +   dq 3 .
                                                                     ∂q 1    ∂q 2     ∂q 3
                                        Substitute these into equation (12.12). This is a long calculation, but after collecting the
                                                               2
                                                                        2
                                                        2
                                        coefficients of (dq 1 ) , (dq 2 ) and (dq 3 ) (the terms in the double sum with i = j), and leav-
                                        ing the cross product terms involving dq i dq j with i  = j within the summation notation, we
                                        obtain
                                                                2        2       2
                                                        "                         #

                                                           ∂x       ∂y       ∂z
                                                     2                                 2
                                                 (ds) =         +        +         (dq 1 )
                                                           ∂q 1     ∂q 1    ∂q 1
                                                          "                        #
                                                                 2        2        2
                                                             ∂x       ∂y       ∂z

                                                        +         +        +         (dq 2 ) 2
                                                            ∂q 2     ∂q 2     ∂q 2
                                                          "                        #
                                                                 2        2        2

                                                             ∂x       ∂y       ∂z
                                                        +         +        +         (dq 3 ) 2
                                                            ∂q 3     ∂q 3     ∂q 3
                                                           3   3

                                                        +         h ij dq i dq j
                                                          i=1 j=1, j =i
                                                                                            3   3

                                                            2    2     2    2      2    2
                                                      =(h 11 ) (dq 1 ) + (h 22 ) (dq 2 ) + (h 33 ) (dq 3 ) +  h ij dq i dq j
                                                                                            i=1 j=1, j =i
                                                         3  3

                                                      =       h ij dq i dq j .
                                                        i=1  j=1
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  14:53  THM/NEIL   Page-417        27410_12_ch12_p367-424
   432   433   434   435   436   437   438   439   440   441   442