Page 256 - Advanced thermodynamics for engineers
P. 256

11.2 ENERGY OF FORMATION         243




                  Note that the atomisation and dissociation energies of oxygen are equal (2DH a [O¼O]¼2[O¼O])
               and cancel out, i.e. the enthalpy of formation of oxygen is zero. This value of zero is assumed as a base
               level for all elements.
                  Thus


                                         ðDH f Þ ¼ðDH f Þ  ¼ 70 MJ=kmol                    (11.18)
                                              R       CH 4
                  Similarly the enthalpy of formation of the products

                           X        X              X          X
                   ðDH f Þ ¼  DH a      DHðX   YÞ      DH res    DH latent
                        P
                               h      i
                         ¼ DH a C graphite þ DH a ½O ¼ OŠþ 2DH a ½H   HŠþ DH a ½O ¼ OŠ  2½C ¼ OŠ
                                                                                           (11.19)
                             2½H   OHŠ  2½O   HŠ  DH res ½CO 2 Š
                         ¼ðDH f Þ   þ 2ðDH f Þ
                                CO 2        H 2 O
                         ¼ 381:5   2   241:7MJ=kmol
                  The heat of reaction is given by

                                      DH R ¼ðDH f Þ  ðDH f Þ R
                                                  P
                                           ¼ 381:5   2   241:7  ð 70Þ                      (11.20)
                                           ¼ 794:9MJ=kmol

                  This is close to the value of  802.3 MJ/kmol quoted as the lower enthalpy of reaction of methane.
               If the higher heat of reaction of methane is required then Eqn (11.14) becomes


                                        CH 4 ðgÞþ 2O 2 ðgÞ/CO 2 ðgÞþ 2H 2 Oð[Þ             (11.21)

               Example
                  Evaluate the lower enthalpy of reaction of benzoic acid (C 6 H 5 COOH). The planar diagram of its
               structure is shown in Fig. 11.7.
                  Solution
                  The reaction of benzoic acid with oxygen is

                                   C 6 H 5 COOHðgÞþ 7:5O 2 ðgÞ/7CO 2 ðgÞþ 3H 2 OðgÞ        (11.22)
                  The easiest way to evaluate the enthalpy of reaction is from Eqn (11.20)

                                             DH R ¼ðDH f Þ  ðDH f Þ R                      (11.23)
                                                         P
                  The values of H f were calculated above for CO 2 and H 2 O, and hence the only unknown quantity in
               Eqn (11.20) is the enthalpy of formation of the benzoic acid, which is
                                       X        X              X         X
                       ðDH f Þ C 6 H 5 COOH  ¼  DH a    DHðX   YÞ   DH res    DH latent    (11.24)
   251   252   253   254   255   256   257   258   259   260   261