Page 96 - Advanced thermodynamics for engineers
P. 96

4.7 AVAILABILITY BALANCE FOR A CLOSED SYSTEM           81





                                Table 4.2 State Points Around Otto Cycle
                                State  v/v 0   p (bar)  T (K)     a/q*     da/q*
                                 0      1        1       300     1.0286
                                 1     1.11      1       333    1.029375  0.000775
                                 2    0.0925  25.28923  701.7762  1.127041  0.097666
                                 3    0.0925  127.5691  3540.043  0.955991   0.17105
                                 4     1.11   5.044404  1679.787  0.332836   0.62316





                    Table 4.3 Terms in Eqn (4.41) Evaluated Around Cycle

                            T i       x a q        v i        T i       p i    a i    da i;iL1
                    State    L1              ðkL1Þ   L1    k ln  LðkL1Þln
                            T 0       c v T 0      v 0        T 0       p 0   q         q
                     0       0      9.731469      0               0          1.0286
                     1      0.11    9.731469     0.033         0.135668     1.029375  0.000775
                     2     1.339254  9.731469   0.27225        0.135668     1.127041  0.097666
                     3     10.80014  9.731469   0.27225        1.753948     0.955991   0.17105
                     4     4.599289  9.731469    0.033         1.753948     0.332836   0.62316



               variation of availability as a function of crankangle and volume during the cycle (calculated by
               applying Eqn (4.41) in a step-by-step manner) is shown in Figs 4.8 and 4.9, respectively.
                  The value of availability of the charge at state 0 is based on the ratio of the availability of com-
               bustion of octane to the heat of reaction of octane, and this is calculated in Section 4.9.2. The
               calculation of most of the other points on the cycle is straightforward, but it is worthwhile considering
               what happens during the combustion process. In the Otto cycle, combustion takes place instanta-
               neously at top dead centre (tdc), and the volume remains constant. This means that when Eqn (4.41) is
               used to consider the effect of adiabatic, constant volume combustion occurring between points 2 and 3
               this gives

                          a 3   a 0  a 2   a 0
                                         ¼
                            q        q
                              "                                                      #

                          c v T 0  T 3       T 2      x a q         T 3         p 3
                                     1            1 þ           k ln   ðk   1Þln            (4.42)
                           q     T 0         T 0      c v T 0       T 2         p 2
                               |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}  |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                                change of availability due to combustion as  change of availability of gases due
                                fuel changes from reactants to products; ¼ 0  to change of entropy of gases
               Hence, the availability at point 3 is

                                 a 3   a 0  a 2   a 0  c v T 0  T 3       p 3
                                        ¼        þ        k ln    ðk   1Þln                 (4.43)
                                   q        q      q          T 2         p 2
   91   92   93   94   95   96   97   98   99   100   101