Page 79 - Advances in bioenergy (2016)
P. 79
10. Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG. Biological
pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 2007,
45:485–491.
11. Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit
cellulose hydrolysis. Biotechnol Progr 1999, 15:804–816.
12. Cheng G, Varanasi P, Li CL, Liu HB, Menichenko YB, Simmons BA, Kent MS, Singh S.
Transition of cellulose crystalline structure and surface morphology of biomass as a
function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.
Biomacromolecules 2011, 12:933–941.
13. Zhou W, Schuttler HB, Hao ZQ, Xu Y. Cellulose hydrolysis in evolving substrate
morphologies I: a general modeling formalism. Biotechnol Bioeng 2009, 104:261–274.
14. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and
sustainable raw material. Angew Chem Int Ed 2005, 44:3358–3393.
15. Ding SY, Himmel ME. The maize primary cell wall microfibril: a new model derived from
direct visualization. J Agric Food Chem 2006, 54:597–606.
16. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv 2000, 18:355–
383.
17. Zhang YHP, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and
selection strategies. Biotechnol Adv 2006, 24:452–481.
18. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The
Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.
Nucleic Acids Res 2009, 37:D233–D238.
19. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, Krogh
KBRM, Jorgensen CI, Tovborg M, Anthonsen A, et al. Insights into the oxidative
degradation of cellulose by a copper metalloenzyme that exploits biomass components.
Proc Natl Acad Sci USA 2011, 108:15079–15084.
20. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Oxidoreductive
cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside
hydrolase 61. Appl Environ Microbiol 2011, 77:7007–7015.
21. Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-
dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora
crassa. Acs Chemical Biology 2011, 6:1399–1406.
22. Kurasin M, Valjamae P. Processivity of cellobiohydrolases is limited by the substrate. J
Biol Chem 2011, 286:169–177.
23. Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF. Applications of