Page 272 - Advances in Eco-Fuels for a Sustainable Environment
P. 272
Prospects and technological advancement of cellulosic bioethanol ecofuel production 235
[37] Doherty WOS. Improved sugar cane juice clarification by understanding calcium oxide-
phosphate-sucrose systems. J Agr Food Chem 2011;59:1829–36. https://doi.org/10.1021/
jf1043212.
[38] Kumar S, Singh N, Prasad R. Anhydrous ethanol: a renewable source of energy. Renew
Sustain Energy Rev 2010;14:1830–44. https://doi.org/10.1016/J.RSER.2010.03.015.
[39] Drapcho CM, Nhuan NP, Walker TH. Biofuels engineering process technology. McGraw-
Hill; 2008.
[40] Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical
and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res
2011;2011:787532. https://doi.org/10.4061/2011/787532.
[41] Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, et al.
Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pre-
treatment. Renew Sustain Energy Rev 2013;27:77–93. https://doi.org/10.1016/j.rser.
2013.06.033.
[42] Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated
development of leading biomass pretreatment technologies. Bioresour Technol
2005;96:1959–66. https://doi.org/10.1016/J.BIORTECH.2005.01.010.
[43] EPA. Environmental Protection Agency. Renewable fuel standard program (RFS2)
regulatory impact analysis. 2018. https://www.epa.gov/ [Accessed 12 August 2018].
[44] Gryta M. Desalination of industrial effluents using integrated membrane processes. Adv.
Desalin.InTech; 2012. https://doi.org/10.5772/49993
[45] Mishra A, Sharma AK, Sharma S, Bagai R, Mathur AS, Gupta RP, et al. Lignocellulosic
ethanol production employing immobilized Saccharomyces cerevisiae in packed bed
reactor. Renew Energy 2016;98:57–63. https://doi.org/10.1016/J.RENENE.2016.02.010.
[46] Das Neves MA, Toshinori K, Shimizu N, Mitsutoshi N. State of the art and future trends of
bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 2007;1:1–14.
[47] Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. How biotech can
transform biofuels. Nat Biotechnol 2008;26:169–72. https://doi.org/10.1038/nbt0208-
169.
[48] Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F. New improvements for lig-
nocellulosic ethanol. Curr Opin Biotechnol 2009;20:372–80. https://doi.org/10.1016/J.
COPBIO.2009.05.009.
[49] REN21. Renewables, In: Global Status Report 2018. 2018. www.ren21.net. Accessed 21
July 2018.
[50] Rastogi M, Shrivastava S. Recent advances in second-generation bioethanol production:
an insight to pretreatment, saccharification and fermentation processes. Renew Sustain
Energy Rev 2017;80:330–40. https://doi.org/10.1016/j.rser.2017.05.225.
[51] Lennartsson PR, Erlandsson P, Taherzadeh MJ. Integration of the first and second-
generation bioethanol processes and the importance of by-products. Bioresour Technol
2014;165:3–8. https://doi.org/10.1016/J.BIORTECH.2014.01.127.
[52] RFA. Renewable Fuels Association. 2018. https://ethanolrfa.org/ [Accessed 5 August
2018].
[53] Megawati SWB, Sulistyo H, Hidayat M. Kinetics of sequential reaction of hydrolysis and
sugar degradation of rice husk in ethanol production: Effect of catalyst concentration. Bio-
resour Technol 2011;102:2062–7. https://doi.org/10.1016/J.BIORTECH.2010.09.084.
[54] Task 39. http://demoplants.bioenergy2020.eu/; 2018. Accessed 4 August 2018.
[55] Rødsrud G, Lersch M, Sj€ ode A. History and future of world’s most advanced biorefinery in
operation. Biomass Bioenergy 2012;46:46–59. https://doi.org/10.1016/j.biombioe.
2012.03.028.