Page 208 - Aerodynamics for Engineering Students
P. 208

Two-dimensional wing theory  191

              Differentiating Eqn (4.78) to satisfy (iii)
                               dY1  -
                              - 3a4 + 2a(b - 1)xl - ab = 0  when  y1 = 1          (4.79)
                                  -
                               dx1
              and if xo corresponds to the value of x1 when yl = 1, i.e. at the point of maximum displace-
              ment from the chord the two simultaneous equations are
                                       1 = ax; + a(b - l)$  - abxo  1
                                       0 = 34 + 2a(b - 1)XO - ab                  (4.80)
              To satisfy (iv) above, AI and A2  must be found. dyl/dxl  can be  converted to expressions
              suitable for comparison with Eqn (4.35) by writing
                                                           1
                                    C
                                 x=-(1  -case)   or   x1 =-(1  -case)
                                    2                     2
                          dYl
                          - L(i - 2cose + cosze) + a(b - 1) - a(b - 1) case - ab
                              =
                          dxl   4



                                                                                  (4.81)
              Comparing Eqn (4.81) and (4.35) gives






                                                        3a s
                                                    A2  =--
                                                         8c
              Thus to satisfy (iv) above, A1  = A2, i.e.
                                                3s
                                   -(;+ub):=ai-  giving  b=-- 7
                                                                8                (4.82)
              The quadratic in Eqn (4.80) gives for xo on cancelling a,

                             -2(b  - 1) f d22(b- 1)2 +4 x 3b   (1 - b) &&z   +b+  1
                                                        -
                         x(j =                          -
                                          6                       3
                                 7
              From Eqn (4.82), b = - - gives
                                 8
                                              22.55
                                         xo  = -       7.45
                                                    or  -
                                               24       24
              i.e. taking the smaller value since the larger only gives the point of reflexure near the trailing
              edge:
                                       y = 6 when x = 0.31 x chord
              Substituting xo = 0.31 in the cubic of Eqn (4.80) gives

                                           a=--  '  - 8.28
                                               0.121
   203   204   205   206   207   208   209   210   211   212   213