Page 8 - Algorithm Collections for Digital Signal Processing Applications using MATLAB
P. 8

Contents                                                          ix

              5 Mean and Variance Normalization                              84
                5-1 Algorithm                                                84
                5-2 Example 1                                                85
                5-3  M-program for Mean and Variance Normalization           86


           Chapter 3   NUMERICAL LINEAR ALGEBRA                              87
              1 Hotelling Transformation                                     87
                1-1  Diagonalization of the Matrix ‘CM’                      88
                1-2 Example                                                  88
                1-3 Matlab Program                                           90
              2 Eigen Basis                                                  91
                2-1 Example  1                                               91
              3 Singular Value Decomposition (SVD)                           93
                3-1 Example                                                  94
              4 Projection Matrix                                            95
                4-1  Projection of the Vector ‘a’ on the Vector ‘b’          95
                4-2  Projection of the Vector on the Plane Described
                    by Two Columns Vectors of the Matrix ‘X’                 96
                    4-2-1  Example                                           97
                    4-2-2 Example 2                                          98
              5 Orthonormal Vectors                                         100
                5-1  Gram-Schmidt Orthogonalization procedure               100
                5-2 Example                                                 101
                5-3  Need for Orthonormal Basis                             101
                5-4  M-file for Gram-Schmidt Orthogonalization Procedure    103
              6 Computation of the Powers of the Matrix ‘A’                 103
                                  th
              7 Determination of K   Element in the Sequence                104
              8 Computation of Exponential of the Matrix ‘A’                107
                 8.1 Example                                                107
              9 Solving Differential Equation Using Eigen decomposition     108
              10 Computation of Pseudo Inverse of the Matrix                109
              11 Computation of Transformation Matrices                     111
                 11-1 Computation of Transformation Matrix for the Fourier   113
                     Transformation
                 11-2 Basis Co-efficient transformation                     115
                 11-3 Transformation Matrix for Obtaining Co-efficient
                     of Eigen Basis                                         117
                 11-4 Transformation Matrix for Obtaining Co-efficient
                     of Wavelet Basis                                       117
              12 System Stability Test Using Eigen Values                   118
              13 Positive Definite Matrix test for Minimal Location
                 of the Function f (x1, x2, x3, x4…xn)                      119
   3   4   5   6   7   8   9   10   11   12   13