Page 152 -
P. 152

References
                                                                                                     147

           References

            [1] M. Bernot, Optimal Transport and Irrigation, Thesis, Ecole Normale
               Sup´ erieure Cachan, 2005
            [2] M. Bernot, V. Caselles and J.-M. Morel, Traffic Plans, Publ. Math., Vol. 49,
               pp. 417–451, 2005
            [3] Y. Brenier, Polar factorization and monotone rearrangement of vector-
               valued functions, Comm. Pure Appl. Math. 44 , pp. 375–417, 1991
            [4] G. Buttazzo and F. Santambrogio, AModel forthe OptimalPlanningofan
               Urban Area, SIAM J. Math. Anal., Vol. 37, Nr. 2, pp. 514–530, 2005
            [5] G. Buttazzo, E. Stepanov, OptimalTransportationNetworksasFreeDirichlet
               Regions for the Monge–Kantorovich Problem, CVGMT, preprint, 2003 5
            [6] L. Caffarelli, A localization property of viscosity solutions of the Monge-
               Ampère equation, Annals of Math. 131, pp. 129–134, 1990
            [7] L. Caffarelli, Interior W 2,p  estimates for Solutions of the Monge-Ampère
               equation, Annals of Math. 131, pp. 135–150, 1990
            [8] L. Caffarelli, Some regularity properties of solutions to the Monge-Ampère
               equation, Comm. in Pure Appl. Math. 44, pp. 965–969, 1991
            [9] L.C. Evans, Partial Differential Equations and Monge–Kantorovich Mass
               Transfer, In: Current Developments in Mathematics 1997, ed. by S.T. Yau 6
           [10] E.N. Gilbert, Minimum cost communication networks,BellSystemTech. J.
               46, pp. 2209–2227, 1967
           [11] L.V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR 37, pp.
               227–229, 1942 (in Russian)
           [12] L.V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk. 3, pp. 225–
               226, 1948
           [13] G. Monge, M´ emoire sur la Th´ eorie des Deblais et des Remblais, Histoire de
               l’Acad. des Sciences de Paris, 1781
           [14] C. Villani, Topics in Optimal Transportation, American Mathematical So-
               ciety, in: Graduate Studies in Mathematics Series, vol. 58, 2003
           [15] Q. Xia, Optimal paths related to transport problems,Commun. Contemp.
               Math. 5(2), pp. 251–279, 2003















           5
             downloadable from the Preprint Server - http://cvgmt.sns.it/papers/gbuest03/
           6
             downloadable from http://www.math.berkeley.edu/∼evans/
   147   148   149   150   151   152   153   154   155   156   157