Page 243 - Applied Probability
P. 243
10. Molecular Phylogeny
229
[14] Lake JA (1987) A rate-independent technique for analysis of nucleic
acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191
[15] Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-
invariant analysis of rRNA sequences. Nature 331:184–186
[16] Lamperti J (1977) Stochastic Processes. A Survey of the Mathematical
Theory. Springer-Verlag, New York
[17] Li W-H, Graur D (1991) Fundamentals of Molecular Evolution.Sin-
auer, Sunderland, MA
[18] Rosen KH (1995) Discrete Mathematics and its Applications, 3rd ed.
McGraw-Hill, New York
[19] Schadt E, Lange K (2001) Codon and rate variation models in molec-
ular phylogeny.
[20] Solberg JJ (1975) A graph theoretic formula for the steady state dis-
tribution of a finite Markov process. Management Sci 21:1040–1048
[21] Thompson CJ (1972) Mathematical Statistical Mechanics. Princeton
University Press, Princeton, NJ
[22] Waterman MS (1995) Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman and Hall, London
[23] Weir BS (1996) Genetic Data Analysis II. Sinauer, Sunderland, MA
[24] Winkler G (1995) Image Analysis, Random Fields, and Dynamic
Monte Carlo. Springer-Verlag, New York
[25] Yang Z (1994) Estimating the pattern of nucleotide substitution. J
Mol Evol 39:105-111