Page 275 - Applied Probability
P. 275

12. Models of Recombination
                                                                                            263

                                                                                       =0)
                                                                       =0,N I 2
                                                                               =0,N I 3
                                                 =0,N I 3
                                       + 2 Pr(N I 2
                                                         =0) − 2Pr(N I 1
                                         1


                                                                                          (12.8)
                                                                          =0} )
                                         4
                                    = − E (1 − 1 {N I 1
                                                      =0} )1 {N I 2
                                                              =0} (1 − 1 {N I 3
                                    ≤ 0.
                              On the other hand, if the map distance assigned to interval I j is d j , then one
                              can invoke Mather’s formula (12.1) and exchange avoidance probabilities
                              for recombination fractions in the above computation. This gives
                                            y {1,2,3} − y {1,3}
                                            1
                                        =      − 2[1 − 2M(d 2 )] + 2[1 − 2M(d 1 + d 2 )]  (12.9)
                                            8
                                                                                     !
                                            +2[1 − 2M(d 2 + d 3 )] − 2[1 − 2M(d 1 + d 2 + d 3 )] .
                              Equality (12.9) and inequality (12.8) together imply that
                                          M(d 1 + d 2 + d 3 ) − M(d 1 + d 2 ) − M(d 2 + d 3 )+ M(d 2 )
                                            d 2 +d 3



                                      =         [M (d 1 + u) − M (u)]du
                                           d 2
                                      ≤ 0.
                              Because this holds for all positive d j , the integrand M (d 1 +u)−M (u) ≤ 0,


                              and property (e) follows from the difference quotient definition of M (d)

                              [27].
                                Now suppose a chiasma process is determined by a stationary renewal
                              model with distribution function F(x) having density f(x)= F (x). Be-

                              cause of stationarity, the map length of the interval [a, a + b]is d =  b  .In
                                                                                          2µ
                              view of Mather’s formula (12.1) and the form of the equilibrium density
                              F (x), the corresponding recombination fraction is

                                ∞
                                                       1     1     ∞          !
                                            M(d)   =      1 −      [1 − F(x)]dx
                                                       2     µ  b
                                                       1     1     ∞     ∞     !
                                                   =      1 −          f(y)dydx .
                                                       2     µ  2µd  x
                              Differentiating this expression twice with respect to d yields
                                                    M (d)   = −2µf(2µd).

                              Thus, f(x) can be recovered via
                                                               1       x
                                                    f(x)=    −   M       .               (12.10)
                                                               2µ     2µ
                              Without loss of generality, we can always rescale distances so that µ =  1
                                                                                              2
                              in this formula.
   270   271   272   273   274   275   276   277   278   279   280