Page 32 - Applied Probability
P. 32

1. Basic Principles of Population Genetics
                                    (a) Verify the differential equations

                                          r (t)= −r(t)+ u(t)+ v(t)
                                                                 2
                                                           1
                                          s (t)= −s(t)+ v(t)+ w(t)

                                                           2     1                           15
                                                                     1


                                          u (t)= −u(t)+ r(t) u(t)+ v(t)
                                                                     2
                                                               1                        1

                                          v (t)= −v(t)+ r(t)     v(t)+ w(t) + s(t) u(t)+ v(t)

                                                               2                        2
                                                                1


                                          w (t)= −w(t)+ s(t)     v(t)+ w(t) .
                                                                2
                                                                   2
                                                                           1
                                    (b) Show that the frequency  r(t)  + [u(t)+ v(t)] of the A 1 allele is
                                                               3   3       2
                                        constant.
                                    (c) Let p 0 be the frequency of the A 1 allele. Demonstrate that
                                                                      3
                                                      [r(t) − p 0 ]    = − [r(t) − p 0 ],
                                                                      2
                                        and hence
                                                                           3
                                                                          − t
                                                      r(t) − p 0 =[r(0) − p 0 ]e  2 .
                                    (d) Use parts (a) and (c) to establish
                                                                  1

                                                        lim u(t)+ v(t)    = p 0 .
                                                       t→∞        2
                                    (e) Show that
                                                           2  t
                                                   [(u(t) − p )e ]
                                                           0
                                                                    2 t
                                                                t
                                                        t
                                                = u (t)e + u(t)e − p e

                                                                    0
                                                             1      t   2 t

                                                = r(t) u(t)+ v(t) e − p e
                                                                        0
                                                             2
                                                                    3
                                                =   p 0 +[r(0) − p 0 ]e − t
                                                                    2
                                                           1     1          − t  3  t  2 t

                                                                             3
                                                   × p 0 − p 0 − [r(0) − p 0 ]e  2  e − p e
                                                                                       0
                                                           3     3              2
                                                                    3
                                                =   p 0 +[r(0) − p 0 ]e − t
                                                                    2
                                                           1          − t  t   2 t

                                                                        3
                                                   × p 0 − [r(0) − p 0 ]e  2  e − p e
                                                                               0
                                                           2
                                                                     1
                                                   p 0           t             2 −2t
                                                =     [r(0) − p 0 ]e −  2 − [r(0) − p 0 ] e  .
                                                    2                2
                                        Thus,
                                                                                          3
                                                                2
                                           u(t) − p 2 0  =[u(0) − p ]e −t  + p 0 [r(0) − p 0 ](e −t  − e − t
                                                                                          2 )
                                                                0
                                                          1
                                                                    2
                                                        − [r(0) − p 0 ] [e −t  − e −3t ].
                                                          4
   27   28   29   30   31   32   33   34   35   36   37