Page 199 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 199

References    189




                  [12] A. Adamatzky, G. Chen (Eds.), Chaos, CNN, Memristors and beyond: A Festschrift for
                      Leon Chua with DVD-ROM, Composed by Eleonora Bilotta, World Scientific, 2013.
                      https://pdfs.semanticscholar.org/3b5e/916a8d8897de46bdfcd945b6119b761f1913.pdf.
                  [13] D. Luenberger, Y. Ye, Linear and Nonlinear Programming, fourth ed., Springer, 2016.
                  [14] P.J. Werbos, Backpropagation through time: what it does and how to do it, Proceedings
                      of the IEEE 78 (10) (1990) 1550e1560. http://mail.werbos.com/Neural/BTT.pdf.
                  [15] T.S. Kuhn, The Structure of Scientific Revolutions, Second ed., University of Chicago
                      Press, 1970.
                  [16] M. Minsky, S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969, pp. 18e19.
                  [17] Van NostrandD.A. White, D.A. Sofge (Eds.), Handbook of Intelligent Control:
                      Neural, Fuzzy, and Adaptive Approaches, 1992 (Chapter 10), www.werbos.com/
                      HIC_Chapter10.pdf.
                  [18] S. Amari, A theory of adaptive pattern classifiers, IEEE Transactions on Electronic
                      Computers 3 (1967) 299e307.
                  [19] W.A. Rosenblith, Sensory Communication: Contributions to the Symposium on Princi-
                      ples of Sensory Communications, Jul. 19eAug. 1, 1959, Endicott House, MIT, MIT
                      Press, 1961.
                  [20] P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
                      Behavioral Sciences (Doctoral Dissertation, Applied Mathematics), Harvard University,
                      MA, 1974.
                  [21] P. Werbos, Backwards differentiation in AD and neural nets: past links and new oppor-
                      tunities, in: Automatic Differentiation: Applications, Theory, and Implementations,
                      2006, pp. 15e34. http://mail.werbos.com/AD2004.pdf.
                  [22] G.E. Box, G.M. Jenkins, Time Series Analysis, Control, and Forecasting, 3226(3228),
                      Holden Day, San Francisco, CA, 1976, p. 10.
                  [23] Y. LeCun, Convolutional Neural Networks. http://deeplearning.net/tutorial/lenet.html.
                  [24] G.W. Cottrell, Extracting features from faces using compression networks: face,
                      identity, emotion and gender recognition using holons, in: Connectionist Models: Pro-
                      ceedings of the 1990 Summer School, 1990, pp. 328e337. http://cseweb.ucsd.edu/
                      wgary/pubs/connectionist-models-1990.pdf.
                  [25] P. Werbos, Mathematical foundations of prediction under complexity, in: Erdos Lecture
                      Series, 2011. www.werbos.com/Neural/Erdos.pdf.
                  [26] A.R. Barron, Approximation and estimation bounds for artificial neural networks,
                      Machine Learning 14 (1) (1994) 113e143.
                  [27] R. Ilin, R. Kozma, P.J. Werbos, Beyond feedforward models trained by back-
                      propagation: a practical training tool for a more efficient universal approximator,
                      IEEE Transactions on Neural Networks 19 (6) (2008) 929e937. https://arxiv.org/abs/
                      0710.4182.
                  [28] C.P. Chen, Z. Liu, Broad learning system: an effective and efficient incremental learning
                      system without the need for deep architecture, IEEE Transactions on Neural Networks
                      and Learning Systems (2018) 10e24.
                  [29] D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory, Wiley
                      Science editions, 1952. http://14.139.56.90/bitstream/1/2027513/1/HS1199.pdf.
                  [30] J.S. Albus, Outline for a theory of intelligence, IEEE Transactions on Systems, Man,
                      and Cybernetics 21 (3) (1991) 473e509. ftp://calhau.dca.fee.unicamp.br/pub/docs/
                      ia005/Albus-outline.pdf.
                  [31] P.J. Werbos, 3-brain Architecture for an Intelligent Decision and Control System, U.S.
                      Patent 6,169,981, January 2, 2001, http://www.freepatentsonline.com/6169981.html.
   194   195   196   197   198   199   200   201   202   203   204