Page 259 - Autonomous Mobile Robots
P. 259

Adaptive Neural-Fuzzy Control of Mobile Robots             245

                                              ˆ
                                                     ˆ
                                 In addition, b m , b c , and b g are the estimates of constants b , b , and b ,
                                           ˆ
                                                                                 ∗
                                                                                           ∗
                                                                                    ∗
                                                                                 m  c      g
                              respectively, which are defined by

                                                   ∗
                                          ∗
                                         b = max{b } > 0,   b ∗                 }      (6.38)
                                          m        m ij      m ij  = max{w m ij  , c m ij  , σ m ij
                                              i,j

                                          ∗
                                                  ∗
                                         b = max{b } > 0,   ∗                 }        (6.39)
                                          c       c ij     b = max{w c ij  , c c ij  , σ c ij
                                                            c ij
                                              i,j

                                         b = max{b } > 0,   ∗               }          (6.40)
                                                  ∗
                                          ∗
                                          g       g i      b = max{w g i  , c g i  , σ g i
                                                            g i
                                               i
                                               are known positive functions defined by
                              and ¯ φ m ij  , ¯ φ c ij  , and ¯ φ g i
                                      T           T
                                  = S ˆ    W m ij  + S ˆ    W m ij  + S ˆ    ˆ c m ij  + S ˆ    ˆ σ m ij   + n rm ij  (6.41)
                                                     ˆ
                                         ˆ
                              ¯ φ m ij
                                      c m ij     σ m ij      c m ij     σ m ij
                                      T          T
                                  = S ˆ    ˆ   + S ˆ    ˆ   + S ˆ     + S ˆ            (6.42)
                               ¯ φ c ij  W c ij    W c ij     ˆ c c ij  ˆ σ c ij   + n rc ij
                                      c c ij     σ c ij     c c ij    σ c ij
                                      T         T
                                                            ˆ  + S
                                     ˆ    ˆ    ˆ    ˆ     ˆ        ˆ
                                  = S W g i  + S  W g i   + S c g i   ˆ σ g i   + n rg i  (6.43)
                               ¯ φ g i
                                      c g i     σ g i     c g i     σ g i
                              Using the “GL” matrix (denoted by upright and bold symbol with curly
                              bracket) and operator (denoted by “•”) introduced in Reference 32, the function
                              emulators (6.35)–(6.37) can be collectively expressed as
                                                           ∗ T
                                                 M(q) =[{W } •{S M }] + E M            (6.44)
                                                           M
                                                           ∗ T
                                               C(q, ˙q) =[{W } •{S C }] + E C          (6.45)
                                                           C
                                                           ∗ T
                                                 G(q) =[{W } •{S G }] + E G            (6.46)
                                                           G
                                                                  ∗
                              where [{W }, {S M }], [{W }, {S C }], and [{W }, {S G }] are the desired weights
                                       ∗
                                                   ∗
                                       M           C              G
                              and basis function GL matrices pairs of the NF emulation of M(q), C(q, ˙q),
                              and G(q), respectively; and E M , E C , E G are the collective NF reconstruction
                              errors, respectively.
                                                  ˆ
                                             ˆ
                                 The estimates M(q), C(q, ˙q), G(q), can, accordingly, be expressed as
                                                         ˆ
                                                                T
                                                    ˆ
                                                             ˆ
                                                                    ˆ
                                                   M(q) =[{W M } •{S M }]              (6.47)
                                                                T   ˆ
                                                             ˆ
                                                  ˆ
                                                  C(q, ˙q) =[{W C } •{S C }]           (6.48)
                                                                T
                                                                    ˆ
                                                    ˆ
                                                             ˆ
                                                    G(q) =[{W G } •{S G }]             (6.49)
                                 Note that in real implementation, the actual control torque τ must be
                              provided rather than Bτ given in (6.34). There are various approaches available
                              © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c006” — 2006/3/31 — 16:42 — page 245 — #17
   254   255   256   257   258   259   260   261   262   263   264