Page 239 - Autonomous Mobile Robots
P. 239
224 Autonomous Mobile Robots
13. Samson, C., Controlofchainedsystems. Applicationtopathfollowingandtime-
varying point-stabilization of mobile robots, IEEE Transactions on Automatic
Control, 40, 64, 1995.
14. Coron, J. M., Stabilizing time-varying feedback, in Symposium on Non-linear
Control System Design, Lake Tahoe, CA, p. 176, 1995.
15. Kolmanovsky, I. and McClamroch, N. H., Application of integrator backstep-
ping to nonholonomic control problems, in Symposium on Nonlinear Control
System Design, Lake Tahoe, CA, p. 753, 1995.
16. Morin, P. and Samson, C., Practical stabilization of driftless systems on Lie
groups: the transverse function approach, IEEE Transactions on Automatic
Control, 48, 1496, 2003.
17. Bloch, A. M., Reyhanoglu, M., and McClamroch, N. H., Control and stabil-
ization of nonholonomic dynamic systems, IEEE Transactions on Automatic
Control, 37, 1746, 1992.
18. Canudas de Wit, C. and Sørdalen, O. J., Example of piecewise smooth stabil-
ization of driftless NL systems with less inputs than states, in Symposium on
Nonlinear Control System Design, Bordeaux, FR, p. 57, 1992.
19. Khennouf, H. and Canudas de Wit, C., On the construction of stabilizing dis-
continuous controllers for nonholonomic systems, in Symposium on Nonlinear
Control System Design, Lake Tahoe, CA, p. 747, 1995.
20. Astolfi, A., Discontinuous control of nonholonomic systems, Systems and
Control Letters, 27, 37, 1996.
21. Laiou, M. C. and Astolfi, A., Discontinuous control of high-order generalized
chained systems, Systems and Control Letters, 37, 309, 1999.
22. Sørdalen, O. J. and Egeland, O., Exponential stabilization of nonholonomic
chained systems, IEEE Transactions on Automatic Control, 40, 35, 1995.
23. Godhavn, J. M. and Egeland, O., A Lyapunov approach to exponential stabiliza-
tion of nonholonomic systems in power form, IEEE Transactions on Automatic
Control, 42, 1028, 1997.
24. Hespanha, J. P. and Morse, A. S., Stabilization of nonholonomic integrators via
logic-based switching, Automatica, 35, 385, 1998.
25. Casagrande, D., Astolfi, A., and Parisini, T., Control of nonholonomic systems:
a simple stabilizing time-switching strategy, in 16th IFAC World Congress,
Praha, CR, 2005.
26. Nam, T. K. et al., Control of high order chained form systems, in Proceedings
of 41st SICE Annual Conference, Osaka, TP, p. 2196, 2002.
27. Monaco, S. and Normand-Cyrot, D., An introduction to motion planning under
multirate digital control, in Proceedings of 31st IEEE Conference on Decision
Control, Tucson, AZ, p. 1780, 1992.
28. Tilbury, D. M. and Chelouah, A., Steering a three-input nonholonomic system
using multi-rate controls, in 2nd European Control Conference, p. 1428, 1993.
29. Lizarraga, D. A., Morin, P., and Samson, C., Non-robustness of continuous
homogeneous stabilizers for affine control systems, in Proceedings of 38th
IEEE Conference on Decision Control, Phoenix, AZ, p. 855, 1999.
30. Lizarraga, D. A., Anneke, N., and Nijmeijer, H., Robust exponential stabiliz-
ation for the extended chained form via hybrid control, in Proceedings of 41st
IEEE Conference on Decision Control, Las Vegas, NV, p. 2798, 2002.
© 2006 by Taylor & Francis Group, LLC
FRANKL: “dk6033_c005” — 2006/3/31 — 16:42 — page 224 — #38