Page 70 - Basic Structured Grid Generation
P. 70

Differential geometry of surfaces in E 3  59

                        We obtain
                                          dλ α
                                         ν          α  ν β γ
                                κ g = ε να λ  + ε να   βγ  λ λ λ
                                          ds
                                              ν  2 α           ν   β  γ
                                     √      du d u           du du du
                                                           α
                                  =   a e να        + e να   βγ
                                             ds ds 2          ds ds ds
                                             2        2            β  γ            β  γ
                                     √   du d v   dv d u      du du du        dv du du
                                                                            1
                                                            2
                                  =   a         −       +   βγ          −   βγ            .
                                         ds ds 2  ds ds 2     ds ds ds        ds ds ds
                        Hence                                 3           3
                                                 2
                                        2
                               κ g   du d v  dv d u    2    du     1    dv
                               √ =         −        +   11      −   22
                                 a   ds ds 2  ds ds 2      ds          ds
                                                                                 2
                                                       2

                                                   du     dv       1     2   dv    du
                                               1
                                         2
                                     +(2  12  −   )           − (2  12  −   )           .  (3.88)
                                               11
                                                                        22
                                                   ds     ds                 ds     ds
                          Example: We calculate the geodesic curvature of a ‘circle of latitude’ (a parallel)
                        θ = θ 0 of a sphere of radius a with surface co-ordinates given by spherical polars
                        θ, φ.
                                1
                                       2
                          Take u = θ, u = φ, with the usual background cartesian co-ordinates defining the
                        spherical surface in the parametric form y 1 = x = a sin θ cos φ, y 2 = y = a sin θ sin φ,
                        y 3 = z = a cos θ. The circle of latitude has radius r = a sin θ 0 , and arc-length s can
                                                                                            α
                                                                                       α
                        be measured from some given meridian as s = rφ. Hence this curve is u = u (s),
                        where
                                                1      2
                                              u = θ 0 ,u = s/r = s/(a sin θ 0 ).
                                                      α
                          Now we have the unit tangent λ , with
                                                 du 1           du 2     1
                                             1              2
                                            λ =      = 0,  λ =      =       .
                                                 ds             ds    a sin θ 0
                                                
 2       2    
 2
                                              ∂x             ∂z     2                     2  2
                                                     ∂y
                          By eqn (3.17), a 11 =   +       +      = a , a 12 = a 21 = 0, a 22 = a sin θ,
                                              ∂θ     ∂θ      ∂θ
                        similarly, and the only non-vanishing Christoffel symbols are, from eqn (3.49), [22, 1]=
                                          2
                        [12, 2]=[21, 2]= a sin θ cos θ,and   1  =   2  =   2  = sin θ cos θ.Hence the first
                                                          22    12    21
                        of eqns (3.87) becomes, with α = 1, 2,
                                                       1           1                2
                                                             2
                                    0 + (sin θ 0 cos θ 0 )   = κ g ν  and 0 + 0 = κ g ν .
                                                    a sin θ 0
                                                                                          1
                                                                                    2
                                2
                                                                                      1
                                                                            α β
                          Thus ν = 0, and since ν is a unit vector, we have a αβ ν ν = a (ν )(ν ) = 1.
                               1
                        Hence ν = a −1 ,and
                                                      κ g = a −1  cot θ 0 .
                                                 3
                          Of course, viewed from E , a parallel is just a circle with curvature κ = r −1  =
                        a −1 cosecθ 0 . Note that the ‘equator’, the parallel with θ = π/2, is a geodesic with
                        geodesic curvature zero.
   65   66   67   68   69   70   71   72   73   74   75