Page 416 - Biaxial Multiaxial Fatigue and Fracture
P. 416

400                          M. FILIPPINI ET AL.

                    v, v,, , vpr   Effective, elastic and plastic Poisson’s ratio
                      6, v,      Spherical coordinates
                      0;         Uniaxial fatigue strength coefficient
                       w         Angular frequency


               APPENDIX

               On an interference plane of normal n (q, 6) a shear strain vector is acting denoted as 1/2y,  :

                                     1
                                     -y,(v,,6,r)=~(t).n-[n.~(t)-n]n
                                     2

                 In the most general case where all the six components of the strain tensor  ~(t) are present,
               the squared intensity of 1/2y, , i.e. 1/4(y,)2 =(1/2y,,).(1/2yn)  is given by, [21]:

                        1   2
                       ;(Y,,) =  [(E:+E:~+E~) sin2q cos2 ~+(E:~+E:+E~~) sin’y?  sin2 8+

                                +(E:  +€:;  +E:)  COS’v,+
                                +2  (E,E,  +   + E~E~) p sin 6 cos 6+
                                                    sin2
                                                 ~
                                               ~
                                            E
                                +2 ( E  ~  +  ~E,E~ + q~,) sin q cos q sin B+
                                                    ~
                                +2  (ex&, + E  ~  +  ~E,E,)  sin v, cos v, cos tp] -
                                                 E
                                -[(E:)  sin4q cos4 6+(&:) sin4q sin4 a+(&:) cos4 p+
                                       +4$)
                                +(~E~E~  sin4q cos2  sin2 tp+
                                +(25eZ +4%)  sin2q cos2 v, sin2 8+
                                +(~E=E, +4~:)  sin2q cos2 v, cos2 a+
                                + ~ E ~ E ~ ~ X Y ) sin4p cos3 6 sin B+ ( ~E,E, ) sin3v, cos q cos3 6+
                                 (
                                +(~E,,E~~) sin4v, sin’ B  c0s8+(4&,&,)  sin3v, cosq  sin3 6+

                                +(~E:E~)  COS^^  sinv, sin0+(4~,~,)  COS^^  sin9  cost^+
                                +(~E~E~~ sin3q COSY,  cos2 0 sintp+
                                       +sE,E,,,)
                                       +
                                +( ~E,E~ SE~~E~,,~) cosp sinZ 8 cos 6+
                                               sin’q
                                +( ~E~E, SE,E=)  sin2v, cosz 9 sin 6 cos 01
                                       +
               where for the off-diagonal components of the strain tensor the standard equality cy = yq/2
               between the mathematical and engineering notation holds.
   411   412   413   414   415   416   417   418   419   420   421