Page 86 - Big Data Analytics for Intelligent Healthcare Management
P. 86
4.6 RESULT AND ANALYSIS 79
Table 4.17 Result of Inception ResNet V2 With LR, SVM, and K-NN on 200×
Feature Extractor Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Inception ResNet V2 LR 91.32 90.63 97.03 93.72
SVM 94.29 94.24 97.40 95.80
K-NN 89.83 92.25 93.24 92.74
98
96
94
Accuracy
92 Precision
Recall
90
F1score
88
86
Logistic regression Support vector K-NN
FIG. 4.23
Performance of Inception ResNet V2 with three different classifiers for 200 .
Table 4.18 Result of Xception with LR, SVM, and K-NN on 200×
Feature Extractor Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Xception LR 90.82 89.73 97.40 93.40
SVM 90.32 88.33 98.51 93.15
K-NN 88.34 90.25 92.59 91.41
100
98
96
94 Accuracy
92
Precision
90
Recall
88
86 F1score
84
82
Logistic regression Support vector K-NN
FIG. 4.24
Performance of Xception with three different classifiers for 200 .