Page 336 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 336

312  14 Enzymatic Stereoselective Synthesis of   -Amino Acids

                       Nicholson, L.W., Rand, C.A., and Burk,  57. Huang, W., Jia, J., Cummings, J.,
                       M.J. (2004) Chemoenzymatic approaches  Nelson, M., Schneider, G., and
                       to the dynamic kinetic asymmetric  Lindqvist, Y. (1997) Crystal structure
                       synthesis of aromatic amino acids.  of nitrile hydratase reveals a novel iron
                       Tetrahedron: Asymmetry, 15, 2793–2796.  centre in a novel fold. Structure, 5,
                     47. Rapheeha, O.K.L. (2013) The enzyme  691–699.
                       conversion of nitriles by bacterial strains  58. Mayaux, J.F., Cerbelaud, E., Soubrier,
                       isolated from soil. MSc dissertation.  F., Yeh, P., Blanche, F., and P´ etr´ e, D.
                       Tshwane University of Technology.  (1991) Purification, cloning and primary
                     48. Winkler, M., Knall, A.C., Kulterer,  structure of a new enantiomer-selective
                       M.R., and Klempier, N. (2007) Nitrilases  amidase from a Rhodococcus strain:
                       catalyze key step to conformationally  structural evidence for a conserved
                       constrained GABA analogous γ-amino  genetic coupling with nitrile hydratase.
                       acids in high optical purity. J. Org.  J. Bacteriol., 173, 6694–6704.
                       Chem., 72, 7423–7426.         59. Piotrowski, M., Sch¨ onfelder, S., and
                     49. Kobayashi, M., Nagasawa, T., and  Weiler, E.W. (2001) The Arabidopsis
                       Yamada, H. (1992) Enzymatic syn-
                                                        thaliana isogene NIT4 and its orthologs
                       thesis of acrylamide: a success story not
                                                        in tobacco encode β-cyano-L-alanine
                       yet over. Trends Biotechnol., 10, 402–408.  hydratase/ nitrilase. J. Biol. Chem., 276,
                     50. Sugiura, Y., Kuwahara, J., Nagasawa, T.,
                                                        2616–2621.
                       and Yamada, H. (1987) Nitrile hydratase:  60. Fournand, D., Bigey, F., and Arnaud, A.
                       the first non-heme iron enzyme with a
                                                        (1998) Acyl transfer activity of an ami-
                       typical low spin Fe (III)-active center. J.
                                                        dase from Rhodococcus sp. Strain R312:
                       Am. Chem. Soc., 109, 5848–5850.
                                                        formation of a wide range of hydrox-
                     51. Brennan, B.A., Alms, G., Nelson, M.J.,
                                                        amic acids. Appl. Environ. Microbiol., 64,
                       Durney, L.T., and Scarrow, R.C. (1996)
                                                        2844–2852.
                       Nitrile hydratase from Rhodococcus  61. Sharma, M., Sharma, N.N., and Bhalla,
                       rhodochrous J1 contains a non-corrin  T.C. (2009) Amidases: versatile enzymes
                       cobalt ion with two sulfur ligands. J.
                                                        in nature. Rev. Environ. Sci. Biotechnol.,
                       Am. Chem. Soc., 118, 9194–9195.
                                                        8, 343–366.
                     52. Brady, D., Beeton, A., Zeevart, J., Kgaje,
                                                     62. Winkler, M., Mart ´ ınkov´ a, L., Knall, A.C.,
                       C., van Rantwijk, F., and Sheldon, R.A.
                                                        Krahulec, S., and Klempier, N. (2005)
                       (2004) Characterisation of nitrilase and
                       nitrile hydratase biocatalytic systems.  Synthesis and microbial transformation
                       Appl. Microbiol. Biotechnol., 64, 76–85.  of β-amino nitriles. Tetrahedron, 61,
                     53. Mascharak, P.K. (2002) Structural and  4249–4260.
                       functional models of nitrile hydratase.  63. Fernandes, B.C.M., Mateo, C.,
                                                        Kiziak, C., Chmura, A., Wacker,
                       Coord. Chem. Rev., 225, 201–214.
                     54. Nagamune, T., Honda, J., Cho, W.-D.,  J., Van Rantwijk, F., Stolz, A., and
                       Kamiya, N., Teratani, Y., Hirata, A.,  Sheldon, R.A. (2006) Nitrile hydratase
                       Sasabe, H., and Endo, I. (1991) Crys-  activity of a recombinant nitrilase. Adv.
                       tallization of a photosensitive nitrile  Synth. Catal., 348, 2597–2603.
                       hydratase from Rhodococcus sp. N-771. J.  64. Heck, T., Seebach, D., Osswald, S.,
                       Mol. Biol., 220, 221–222.        ter Wiel, M.K.J., Kohler, H.-P.E., and
                     55. Endo, I., Odaka, M., and Yohda, M.  Geueke, B. (2009) Kinetic resolution
                       (1999) An enzyme controlled by light:  of aliphatic β-amino acid amides by
                       the molecular mechanism of photore-  β-aminopeptidases. ChemBioChem, 10,
                       activity in nitrile hydratase. Trends  1558–1561.
                       Biotechnol., 17, 244–249.     65. Frederick, J. (2013) Genetic character-
                     56. Endo, I. and Odaka, M. (2000) What  ization of Rhodococcus rhodochrous
                       evidences were elucidated about photore-  ATTCC BAA-870 with emphasis on
                       active nitrile hydratase? J. Mol. Catal. B:  nitrile hydrolysing enzymes. PhD thesis.
                       Enzym., 10, 81–86.               University of Cape Town.
   331   332   333   334   335   336   337   338   339   340   341