Page 177 - Biofuels Refining and Performance
P. 177
160 Chapter Five
that isopropyl esters have better fuel properties than methyl esters.
The major disadvantage is the higher price of isopropanol in compari-
son to methanol, besides modifications needed for the transesterifica-
tion reaction. Similar observations likely hold for the fatty acid moiety.
It may be possible in the future to improve the properties of biodiesel
by means of genetic engineering of the parent oils, which could even-
tually lead to a fuel enriched with (a) certain fatty acid(s), possibly oleic
acid, that exhibits a combination of improved fuel properties.
References
1. G. Knothe, J. Krahl, and J. Van Gerpen (Eds.). The Biodiesel Handbook, Champaign,
IL: AOCS Press, 2005.
2. M. Mittelbach and C. Remschmidt. Biodiesel—The Comprehensive Handbook, Graz,
Austria: Martin Mittelbach, 2004.
3. B. Freedman and M. O. Bagby. Heats of combustion of fatty esters and triglycerides,
Journal of the American Oil Chemists’ Society 66, 1601–1605 (1989).
4. G. Knothe. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl
esters, Fuel Processing Technology 86, 1059–1070, 2005.
5. R. C. Weast (Ed.). Handbook of Chemistry and Physics, 66th ed., Boca Raton, FL: CRC
Press, p. D272, 1986.
6. F. D. Gunstone, J. L. Harwood, and F. B. Padley. The Lipid Handbook, London:
Chapman & Hall, 1994.
7. W. E. Klopfenstein. Effect of molecular weights of fatty acid esters on cetane numbers
as diesel fuels, Journal of the American Oil Chemists’ Society 62, 1029–1031, 1985.
8. G. Knothe, M. O. Bagby, and T. W. Ryan III. Cetane Numbers of Fatty Compounds:
Influence of Compound Structure and of Various Potential Cetane Improvers, SAE
Technical Paper Series 971681, In: State of Alternative Fuel Technologies, SAE
Publication SP-1274, Warrendale, PA, pp. 127–132, 1997.
9. G. Knothe, A. C. Matheaus, and T. W. Ryan III. Cetane numbers of branched and
straight-chain fatty esters determined in an ignition quality tester, Fuel 82, 971–975,
2003.
10. C. A. W. Allen, K. C. Watts, R. G. Ackman, and M. J. Pegg. Predicting the viscosity of
biodiesel fuels from their fatty acid ester composition, Fuel 78, 1319–1326, 1999.
11. G. Knothe and K. R. Steidley. Kinematic viscosity of biodiesel fuel components.
Influence of compound structure and comparison to petrodiesel fuel components, Fuel
84, 1059–1065, 2005.
12. A. D. Puckett and B. H. Caudle. Ignition qualities of hydrocarbons in the diesel-fuel
boiling range, U.S. Bureau of Mines Information Circular, No. 7474, 14 pp., 1948.
13. P. Q. E. Clothier, B. D. Aguda, A. Moise, and H. Pritchard. How do diesel-fuel igni-
tion improvers work? Chemical Society Reviews 22, 101–108, 1993.
14. B. Freedman, M. O. Bagby, T. J. Callahan, and T. W. Ryan III. Cetane Numbers of
Fatty Esters, Fatty Alcohols and Triglycerides Determined in a Constant Volume
Combustion Bomb, SAE Technical Paper Series 900343, 1990.
15. U.S. Environmental Protection Agency. A Comprehensive Analysis of Biodiesel Impacts
on Exhaust Emissions, Draft Technical Report EPA420-P-02-00, October 2002; see also
www.epa.gov/oms/models/analysis.p02001.pdf (accessed January 2007).
16. R. L. McCormick and T. L. Alleman. Effect of biodiesel fuel on pollutant emissions from
diesel engines, In: The Biodiesel Handbook, Knothe, G., Van Gerpen, J., and Krahl,
J., (Eds.), Champaign, IL: AOCS Press, pp. 165–174, 2005.
17. J. Krahl, A. Munack, O. Schröder, H. Stein, and J. Bünger. Influence of biodiesel and
different petrodiesel fuels on exhaust emissions and health effects, In: The Biodiesel
Handbook, Knothe, G., Van Gerpen, J., and Krahl, J. (Eds.), Champaign, IL: AOCS
Press, pp. 175–182, 2005.