Page 393 - Biomimetics : Biologically Inspired Technologies
P. 393

Bar-Cohen : Biomimetics: Biologically Inspired Technologies DK3163_c014 Final Proof page 379 6.9.2005 12:41pm




                    Biological Materials in Engineering Mechanisms                              379

                    Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J,
                         Umezawa A, and Ogawa S, Cardiomyocytes can be generated from marrow stromal cells in vitro.
                         Journal of Clinical Investigation, 103: 697–705, 1999.
                    Marsh RE, Corey RB, and Pauling L, The crystal structure of silk fibroin. Acta Crystallographica, 8(1): 62–62,
                         1955.
                    Nazarov R, Jin H-J, and Kaplan DL, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules,
                         5: 718–726, 2004.
                    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B,
                         Bodine DM, Leri A, and Anversa P, Bone marrow cells regenerate infarcted myocardium. Nature,
                         410: 701–705, 2001.
                    Otero TF, Grande H, and Rodriguez J, Reversible electrochemical reactions in conducting polymers:
                         a molecular approach to artificial muscles. Journal of Physical Organic Chemistry, 9: 381–386, 1996.
                    Pokroy B and Zolotoyabko E., Microstructure of a natural plywood-like ceramics: a study by high resolution
                         electron microscopy and energy-variable x-ray diffraction. Journal of Materials Chemistry, 13(4):
                         682–688, 2003.
                    Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, and Vunjak-Novakovic G, Medium perfusion
                         enables engineering of compact and contractile cardiac tissue. American Journal of Physiology: Heart
                         Circulatory Physiology, 286: H507–H516, 2004.
                    Rathore O and Sogah DY, Self-assembly of beta-sheets into nanostructures by poly(alanine) segments
                         incorporated in multiblock copolymers inspired by spider silk. JACS, 123(22): 5231–5239, 2001.
                    Sarikaya M, Tamerler C, Jen AKY, Schulten K, and Baneyx F, Molecular biomimetics: nanotechnology
                         through biology. Nature Materials, 2(9): 577–585, 2003.
                    Smith BL, Schaffer TE, Via M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, and
                         Hansma PK, Molecular mechanistic origin of the toughness of natural adhesives, fibres and compos-
                         ites, Nature, 399: 761–763, 1999.
                    Song F, Soh AK, and Bai YL, Structural and mechanical properties of the organic matrix layers of nacre.
                         Biomaterials, 24: 3623–3631, 2003.
                    Tamerler C, Dincer S, Heidel D, Zareie MH, and Sarikaya M, Biomimetic multifunctional molecular coatings
                         using engineered proteins. Progress in Organic Coatings, 47: 267–274, 2003.
                    Tang ZY, Kotov NA, Magonov S, and Ozturk B, Nanostructured artificial nacre. Nature Materials, 2: 413–419,
                         2003.
                    Valluzzi R, Probst W, Jacksch H, Zellmann E, and Kaplan DL, Patterned peptide multilayer thin films with
                         nanoscale order through engineered liquid crystallinity. Soft Materials, 1: 245–262, 2003.
                    Vollrath F and Knight DP, Liquid crystalline spinning of spider silk. Nature, 410: 541–548, 2001.
                    Wakling JM, Biomechanics of fast-start swimming in fish. Comparative Biochemistry and Physiology, 131:
                         31–40, 2001.
                    Wong C and Kaplan DL, Genetic engineering of fibrous proteins: spider dragline silk and collagen. Advances
                         of Drug Delievery Reviews, 54: 1131–1143, 2002.
                    Wustman BA, Morese DE, and Evans JS, Structural analyses of polyelectrolyte sequence domains with the
                         adhesive elsastomeric biomeralization protein Lustrin A. Langmuir, 18: 9901–9906, 2002.
                    Zaremba CM, Belcher AM, Fritz M, et al. Critical transitions in the biofabrication of abalone shells and flat
                         pearls. Chemical Materials, 8(3): 679–690, 1996.
                    Zhang B, Wustman BA, Morse D, and Evans JS, Model peptide studies of sequence regions in the elastomeric
                         biomeralization protein, Lustrin A.I. The C-domain consensus–PG-, -NVNC, 2002.
   388   389   390   391   392   393   394   395   396   397   398