Page 31 - Calc for the Clueless
P. 31

Example 24—



        If,               , find y.

        Let u = x  + 11. du/dx = 4x .
                 4
                                  3









        Example 25—

                2
        If v = 6t  + 4t + 3 and s = 40 when t = 1, find s. s = distance, v = velocity, t = time, v = ds/dt.











                                             3
                                                    2
        Use t = 1 when s = 40 to get 40 = 2(1)  + 2(1)  + 3(1) + C. C=33.



















        The development of the area as motivation for the definite integral is detailed in most calculus books. We will
        sketch the development.

        A. Given the region y = f(x), x = a, x = b, x axis.

        B. Divide the interval [a,b] into n intervals, ∆x 1, ∆x 2, ∆x 3,... ∆x n. ∆x i represents an arbitrary interval.

        C. Let w i be any point in the interval ∆x i.


        D. ∆x 1 represents the width of the first approximating rectangle. f(w 1) represents the height of the first rectangle.
        ∆x 1 f(w 1) represents the area of the first approximating rectangle.

        E. Do this for all the rectangles. We get
   26   27   28   29   30   31   32   33   34   35   36