Page 144 - Calculus Demystified
P. 144

CHAPTER 5
                         SOLUTION     Indeterminate Forms                                        131
                           The expression is indeterminate of the form ∞−∞. We put the two fractions
                         over a common denominator to obtain
                                                     e 4x  − 1 − 4x
                                                 lim            .
                                                x→0 4x(e 4x  − 1)
                         Notice that the numerator and denominator both tend to zero as x → 0, so this
                         is indeterminate of the form 0/0. Therefore l’Hôpital’s Rule applies and our
                         limit equals
                                                    4e 4x  − 4
                                             lim                .
                                                   4x
                                             x→0 4e (1 + 4x) − 4
                         Again the numerator and denominator tend to zero and we apply l’Hôpital’s
                         Rule; the limit equals
                                                      16e 4x      1
                                              lim              = .
                                                     4x
                                              x→0 16e (2 + 4x)    2

                                                             1          2
                     You Try It: Evaluate the limit lim x→0         +    2  .
                                                         cos x − 1      x
                     5.2.5     OTHER ALGEBRAIC MANIPULATIONS

                     Sometimes a factorization helps to clarify a subtle limit:

                         EXAMPLE 5.12
                         Evaluate the limit
                                                
  2   4    2    1/2
                                            lim  x − (x + 4x + 5)    .
                                           x→+∞
                         SOLUTION
                           The limit as written is of the form ∞−∞. We rewrite it as

                                                                    1 − (1 + 4x −2  + 5x −4 1/2
                                                                                        )


                                 2
                           lim x 1 − (1 + 4x −2  + 5x −4 1/2  = lim                        .
                                                       )
                          x→+∞                                x→+∞            x −2
                         Notice that both the numerator and denominator tend to zero, so it is now
                         indeterminate of the form 0/0. We may thus apply l’Hôpital’s Rule. The result
                         is that the limit equals
                                                            )
                                     (−1/2)(1 + 4x −2  + 5x −4 −1/2  · (−8x −3  − 20x −5 )
                                lim
                               x→+∞                      −2x −3
                                                  −2      −4 −1/2        −2
                                  = lim −(1 + 4x     + 5x   )    · (2 + 5x  ).
                                    x→+∞
   139   140   141   142   143   144   145   146   147   148   149